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Introduction
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Realizations of X

When the maximal information about a d-dimensional random vector
X is a set of N iid realizations, the kernel density estimation

(KDE) is a widely used technique to infer the PDF of X.
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Introduction

For instance, it can be used

to process the samples provided by a MCMC approach in the Bayesian
calibration of a computational code
[Berliner, 2001, Kaipio and Somersalo, 2004],
to approximate goal-oriented Sobol indices [Perrin and Defaux, 2018],
to optimize under uncertainties a particular code output
[Soize and Ghanem, 2017].

In practice, this technique is limited to cases when d is small (less
than five in general).

Problematic

What could we propose to extend the validity of this technique to higher
values of d (d ∼ 10− 100) with limited information (N ∼ 10d for
instance)?
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Theoretical framework

Let X := {X(ω), ω ∈ Ω} be a second-order random vector defined
on a probability space (Ω,A,P), with values in R

d.

The PDF of X is denoted by pX .

The maximal available information about pX is a set of N > d

independent and distinct realizations of X, which are gathered in the
deterministic set S(N) := {X(ωn), 1 ≤ n ≤ N}.

Given these realizations of X, the kernel estimator of pX is

p̂X(x;H ,S(N)) =
det(H)−1/2

N

N∑

n=1

K
(
H−1/2 (x−X(ωn))

)
,

where det(·) is the determinant operator, K is any function of
M1(R

d,R+), and H is a (d× d)-dimensional positive definite
symmetric "bandwidth matrix".
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Theoretical framework

In this work, we focus on the classical case when K is the Gaussian
multidimensional density (↔ "G-KDE"):

p̂X(x;H ,S(N)) =
1

N

N∑

n=1

φ (x;X(ωn),H) , x ∈ R
d.

Here, φ(·;µ,C) is the PDF of any R
d-dimensional Gaussian random

vector with mean µ and covariance matrix C:

φ (x;µ,C) :=
exp

(
−1

2 (x− µ)T C−1 (x− µ)
)

(2π)d/2
√

det(C)
, x ∈ R

d.

⇒ pX is approximated by a mixture of N Gaussian PDFs, whose means
are the available realizations of X and whose covariance matrices are all
equal to H
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Identification of the kernel parameters

By construction, H characterizes the local contribution of each
realization of X.

Its value has to be optimized to minimize the difference between pX ,
which is unknown, and p̂X(·;H ,S(N)).

The mean integrated squared error (MISE) performance criterion

MISE(H ; d,N) = E

[∫

Rd

(pX(x)− p̂X(x;H ,S(N)))2 dx

]

is generally considered to quantify such a difference.

Given sufficient regularity conditions on pX , an asymptotic
approximation of this criterion can be derived, leading to the
commonly-used Silverman bandwidth matrix [Silverman, 1986]

HSilv(d,N) := (hSilv(d,N))2R̂X , hSilv(d,N) :=

(
1

N

4

(d+ 2)

) 1
d+4

,

with R̂X the empirical estimation of the covariance matrix of X.
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Identification of the kernel parameters

In practice, it is generally observed that, for fixed values of N,
HSilv(d,N) overestimates the scattering of pX .

To circumvent this problem, the LOO expression of the likelihood,

LLOO(S(N)|H) :=
N∏

n=1

1

N − 1

N∑

m=1,m6=n

φn,m(H),

φn,m(H) := φ (X(ωn);X(ωm),H) , 1 ≤ n,m ≤ N,

can instead directly be used to identify H [van der Laan et al., 2004].

In this presentation, we will focus on the maximum likelihood

estimate of H , denoted by

HMLE(d,N) := arg max
H∈M+(d)

LLOO(S(N)|H).
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Imposing correlation constraints

Considering that the best available approximations of the true mean
and covariance matrix of X are given by their empirical estimations,
the former expression can be slightly modified.

Indeed, if the PDF of X is equal to

p̃X(·;H ,S(N)) :=
1

N

N∑

n=1

φ (·;AX(ωn) + β,H) ,

β := (Id −A)µ̂, H := R̂X −
N − 1

N
AR̂XAT ,

the mean and the covariance matrix of X are equal to µ̂ and R̂X

respectively [Perrin et al., 2018].

Given S(N), the G-KDE of the PDF of X under constraints on its
mean and its covariance matrix will be denoted by
p̃X(·;HMLE(d,N),S(N)) in the following.
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Difficulties in high dimension

In practice, when considering the nonparametric modelling of high
dimensional random vectors (d ∼ 10− 100) with limited information
(N ∼ 10d for instance), we observe that HMLE(d,N) is very close to
R̂X .

This means that we are approximating the PDF of X as a unique

Gaussian PDF, whose parameters correspond to the empirical mean
and covariance matrix of X:

lim
H→R̂X

p̃X(·;H ,S(N)) = φ(·; µ̂, R̂X).

This could prevent us from recovering the subset of Rd on which X is
actually concentrated.
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Difficulties in high dimension - the Lemniscate function

X(2D) = (XL
1 + 0.05ξ1,X

L
2 + 0.05ξ2, ξ3, . . . , ξd),

XL ↔ Lemniscate function, ξi are iid standard Gaussian r.v.
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Figure: N = 500 given values of X(2D) (big black squares) and 104 additional
values (small red points) generated from a G-KDE approach for several values of d.
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Difficulties in high dimension - the four branches clover-knot
function

X(3D) = (XFB
1 + ξ1, . . . ,X

FB
3 + ξ3, ξ4, . . . , ξd),

XFB ↔ Four branch clover-knot function, ξi iid standard Gaussian r.v.
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Figure: N = 500 given values of X(3D) (big black squares) and 104 additional
values (small red points) generated from a G-KDE approach for several values of d.
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Block-by-block decomposition

The idea is to identify groups of components of X that can
reasonably be considered as statistically independent, if they exist.

Given a decomposition of X in Nb blocks X(1), . . . ,X(Nb), PDF pX
is approximated as the product of the nonparametric estimations of
the PDFs associated with each sub-vector of X:

pX ≈

Nb∏

ℓ=1

p̃
X(ℓ)(·;H (ℓ),S(N)).

Instead of using statistical tests, we propose to search these groups by
looking for the minimum of a cross-validation AIC that is associated
with each block formation [Perrin et al., 2018].

Hypotheses

1 X is centred and uncorrelated: µ̂X = 0, R̂X = Id.

2 Hℓ is parametrized by a unique scalar: Hℓ = h2ℓIdℓ , 0 < hℓ ≤ 1.
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Identification of the block-by-block decomposition

For any b in {1, . . . , d}d, bi can be used as a block index for the ith

component of X.

This means that if bi = bj, Xi and Xj are supposed to be dependent

and belong to the same block. On the contrary, if bi 6= bj , Xi and Xj

are supposed to be independent and they can belong to two
different blocks.

There exists a bijection between the set of all block by block
decompositions of X and the set

B(d) :=

{
b ∈ {1, . . . , d}d | b1 = 1,

1 ≤ bj ≤ 1 + max1≤i≤j−1 bi, 2 ≤ j ≤ d

}
.

Difficulty

The cardinal of B(d) increases exponentially with d.
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Identification of the block-by-block decomposition

Greedy identification - initialization

b = (1, . . . , 1)
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Identification of the block-by-block decomposition

Greedy identification - first loop

b ∈ {(b1, . . . , bd) | bi = 2, bj 6=i = 1, 1 ≤ i ≤ d}
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Identification of the block-by-block decomposition

Greedy identification - first fixed point

b = (1, 2, 1, . . . , 1)
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Identification of the block-by-block decomposition

Greedy identification - second loop

b ∈ {(b1, . . . , bd) | b2 = 2, bi ∈ {2, 3} , bj 6=i,j 6=2 = 1, i 6= 2}
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Identification of the block-by-block decomposition

Greedy identification - second fixed point

b = (1, 2, 1, . . . , 1, 3, 1)
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Identification of the block-by-block decomposition

Greedy identification - last fixed point

b = (1, 2, 3, . . . , 1, 3)
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Interest of the proposed decomposition in high dimension

The greedy algorithm allows the identification of good values for b at
a reduced computational cost.

We verified on a series of test cases that the algorithm was able to
identify the correct block decomposition with 2 ≤ d ≤ 100 and
N = 10d in a reasonable computational time.

Evolutionary algorithms can also be used to address problems in
higher dimensions.

d 1 2 3 4 5 6 7 8 9 10

♯B(d) 1 2 5 15 52 203 877 4140 21147 115975

Nmax
greedy(d) 1 3 8 17 31 51 78 113 157 211

Table: Evolution of the number of elements of B(d), ♯B(d), and the maximum
number of configurations tested by the greedy algorithm, Nmax

greedy(d), with respect
to d.
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Interest of the proposed decomposition in high dimension
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Physical description of the problem

Figure: Four heterogeneous media

Problematic

How to infer the statistical properties of a random medium from a limited
number of indirect measurements?
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Physical description of the problem

We are interested in the identification of the mechanical properties of
a heterogeneous elastic medium.

Several experimental tests are performed on a series of M specimens
made of the same material. Let V be their volume.

For each experiment, the applied force field is supposed to be
imposed, and the induced displacement field is measured on the

contours of the specimens only.

In parallel, for given properties of the considered medium, it is possible
to approximate (using the Finite Element Method) the displacements
that are induced by the experimental force field.

In this work, we focus on the estimation of 5 quantities gathered in
the vector z = (λ, ℓ1, ℓ2, µν , µE), where λ is a fluctuation level, ℓ1
and ℓ2 are two correlation lengths, and µν and µE are the means of
the Poisson coefficient and the Young modulus respectively.
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Mathematical description of the problem

Let X be the elasticity field characterizing the mechanical properties
of the material that constitutes the specimens.

X is supposed to be random, and we assume that it belongs to a
known class of parametric random fields, such that:

X = {X(s, ω;z⋆), s ∈ V, ω ∈ Ω} ,

where z⋆ ∈ Z is unknown.

X is not a real-valued random field, but a tensor-valued random field,
and its different components cannot be identified separately due to
algebraic constraints.

Let u(X(ω;z)) be the induced displacement on the contour of the
specimen associated with the particular realization X(ω;z) of X(z).

This displacement can be decomposed in two contributions :

u(s;X(ω;z)) = û(s;E[X(z)]) + ũ(s;X(ω;z)).
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Illustration of the problem
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Bayesian formulation

z⋆ is modelled by a random vector, denoted by Z, to take into
account the fact that its values are unknown. Let fZ be its PDF.

Let Y (z) be a dy-dimensional random vector that condenses the
statistical properties of u(X(z)) and fY (z) be its PDF.

M independent realizations of Y (z⋆) are gathered in the set
Y := {Y (ω1;z

⋆), . . . ,Y (ωM ;z⋆)} (one for each specimen).

Using the Bayes theorem, it comes:

fZ|Y(z) =
LY(z)fZ(z)

E [LY(Z)]
, z ∈ R

dz .

There, LY(z) is the likelihood function.
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Approximation of the likelihood

LY(z) =

M∏

m=1

fY (z)(Y (ωm;z⋆)), z ∈ R
dz .

Independent estimation

LY(z) ≈

M∏

m=1

f̃Y (z)(Y (ωm;z⋆)),

where f̃Y (z) is the kernel estimator of fY (z) based on N independent
realizations of Y (Z)|Z = z.

For each value of z, N evaluations of the code are required to approximate
LY(z) ⇒ as the likelihood function has to be evaluated a high number of
times to get precise information about the PDF of Z|Y, this computational
cost is generally not affordable.
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Approximation of the likelihood

Joint estimation

LY(z) ≈

M∏

m=1

f̃Y (z)(Y (ωm;z⋆)),

f̃Y (z)(y) =
f̃Y ,Z(y,z)∫

R
dy f̃Y ,Z(v,z)dv

where f̃Y ,Z is the kernel estimator of the PDF of (Y (Z),Z) based on N

independent realizations of (Y (Z),Z).

⇒ only N evaluations of the code are needed to approximate the whole
function LY.

Remark: using Gaussian kernels, the expression of f̃Y (z) is explicit once

f̃Y ,Z is known.
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Influence of the block decomposition on the calibration
results

N = 1000 code evaluations are carried out to infer the value of z⋆.

Coefficients µν and µE are estimated using preliminary comparisons to
the homogeneous case.

The components of Y (z) correspond to the dy first components of
the KL decomposition of u(X(z)).
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Figure: Evolution of the projection error with respect to dy.
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Influence of the block decomposition on the calibration
results

N = 1000 code evaluations are carried out to infer the value of z⋆.

Coefficients µν and µE are estimated using preliminary comparisons to
the homogeneous case.

The components of Y (z) correspond to the dy first components of
the KL decomposition of u(X(z)).
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Figure: White square: reference value. Red: 95% credible ellipses using dy = 23
components (corresponding to a projection error of 0.1%).
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Influence of the block decomposition on the calibration
results

N = 1000 code evaluations are carried out to infer the value of z⋆.

Coefficients µν and µE are estimated using preliminary comparisons to
the homogeneous case.

The components of Y (z) correspond to the dy first components of
the KL decomposition of u(X(z)).
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Figure: White square: reference value. Red: 95% credible ellipses using dy = 23
components (corresponding to a projection error of 0.1%). Green: 95% credible
ellipses using only dy = 5 components.
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Influence of the block decomposition on the calibration
results

N = 1000 code evaluations are carried out to infer the value of z⋆.

Coefficients µν and µE are estimated using preliminary comparisons to
the homogeneous case.

The components of Y (z) correspond to the dy first components of
the KL decomposition of u(X(z)).
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Figure: White square: reference value. Red: 95% credible ellipses using dy = 23
components (corresponding to a projection error of 0.1%). Green: 95% credible
ellipses using only dy = 5 components. Blue: 95% credible ellipses using dy = 23
components, with an optimization of the block decomposition of Y (Z)|Z.
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Adaptive calibration
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Adaptive calibration

Step 1: N = 1000 code evaluations are carried out.
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23 blocks for the PDF of Y (Z)|Z.
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Adaptive calibration

Step 1: N = 1000 code evaluations are carried out.

Step 2: 889 new points in the likely region (provided by the calibration
results of step 1) of z⋆ are added to the learning set.
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23 blocks for the PDF of Y (Z)|Z. Red: results of step 2, with dy = 23 and 8
blocks for the PDF of Y (Z)|Z.
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Adaptive calibration

Step 1: N = 1000 code evaluations are carried out.

Step 2: 889 new points in the likely region (provided by the calibration
results of step 1) of z⋆ are added to the learning set.

Step 3: 631 new points in the likely region (provided by the calibration
results of step 2) of z⋆ are added to the learning set.
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Figure: White square: reference value. Blue: results of step 1, with dy = 23 and
23 blocks for the PDF of Y (Z)|Z. Red: results of step 2, with dy = 23 and 8
blocks for the PDF of Y (Z)|Z. Green: results of step 3, with dy = 23 and 4
blocks for the PDF of Y (Z)|Z.
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Conclusion

This work considers the challenging problem of identifying complex
PDFs when the maximal available information is a set of independent
realizations.
In that prospect, the multidimensional G-KDE method plays a key
role, as it presents a good compromise between complexity and
efficiency.
Two adaptations of this method have been presented to deal with high
dimensional random vector:

a modified formalism is presented to make the mean and the covariance
matrix of the estimated PDF equal to their empirical estimations.
tensorized representations are proposed, which are based on the
identification of a block by block dependence structure of the random
vectors of interest.

The interest of these two adaptations has been illustrated for the
identification of the mechanical properties of a random medium.
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Conclusion

This work considers the challenging problem of identifying complex
PDFs when the maximal available information is a set of independent
realizations.
In that prospect, the multidimensional G-KDE method plays a key
role, as it presents a good compromise between complexity and
efficiency.
Two adaptations of this method have been presented to deal with high
dimensional random vector:

a modified formalism is presented to make the mean and the covariance
matrix of the estimated PDF equal to their empirical estimations.
tensorized representations are proposed, which are based on the
identification of a block by block dependence structure of the random
vectors of interest.

The interest of these two adaptations has been illustrated for the
identification of the mechanical properties of a random medium.
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