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Problems that motivated this work

1. Reconstruction of acoustic fields :

An acoustic pressure field p(x , t) generated by a source is measured by n microphones
at positions x1, . . . , xn ∈ X ⊂ R2 or R3, for t ∈ [0,T ].

Fourier analysis in time p(xi , t) 7→ p̂(xi , ω) and focus at a frequency ω of interest.

One wants to reconstruct the function u(x) := p̂(x , ω) on X , from the observed data
u(xi ), i = 1, . . . , n.
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2. Fast solutions to high dimensional parametric PDE’s :

Partial differential equation P(u, x) = 0 depending on a parameter vector x ∈ X ⊂ Rd

with d >> 1.

For each x ∈ X , the PDE is well posed in some Hilbert space V : solution map
x 7→ u(x) ∈ V .

Example : −div(a∇u) = f on a domain D (with boundary conditions), where diffusion
a is piecewise constant on subdomains D1, . . . ,Dd , with values a1, . . . , ad , which
define the parameter vector x = (a1, . . . , ad ) ∈ X = [amin, amax]d .

We want to reconstruct the solution map, from “snapshots” : particular instances of
solutions u(xi ), i = 1, . . . , n computed by some numerical solver.
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Common features

Reconstruction of unknown function u from scattered data.

Measurements yi = u(xi ) are costly : one cannot afford to have n >> 1.

Measurements could be noisy : yi = u(xi ) + ηi .

The xi can be chosen by us (this talk) or imposed, deterministic or random.

Questions : how should we sample ? how should we reconstruct ?

Extra information on unknown function u from the model (acoustic or PDE).

Approximability prior : analysis from these models shows that in both there exists
sequences of m dimensional linear spaces (Vm)m>0 such that the unknown function u
is well approximated by such spaces

em(u) := min
v∈Vm

‖u − v‖ ≤ ε(m),

where ε(m) is a known bound (such as Cm−s) and where

‖v‖ := ‖v‖L2(X ,ρ),

with ρ some probability measure on X .
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Weighted least-squares approximation

The exact L2(X , ρ) projection Pmu = argminv∈Vm
‖u − v‖ is out of reach.

For a certain value of m ≤ n solve :

uW = Argminv∈Vm

1

n

n∑
i=1

w(xi )|yi − v(xi )|
2.

Widely used since its introduction by Gauss.

Standard (unweighted) least-squares : w = 1.

When yi = u(xj ) (noiseless case), then uW can be viewed as the orthogonal projection
of u onto Vm in the sense of the Hilbertian (semi)-norm ‖ · ‖n defined by

‖v‖2
n :=

1

n

n∑
i=1

w(xi )|v(xi )|
2.
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Implementation

The minimization problem is solved by using a given basis L1, . . . , Lm of Vm and
searching

uW =

m∑
j=1

cjLj .

The vector c = (c1, . . . , cm)t is solution to the normal equations

Gc = a,

with G = (Gk,j )k,j=1,...,m and a = (a1, . . . , an)t , where

Gk,j :=
1

n

n∑
i=1

w(xi )Lk (xi )Lj (xi ) and ak :=
1

n

n∑
i=1

w(xi )yiLk (xi ).

The solution always exists and is unique if G is invertible.
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General questions

1. How accurate is the least square approximation ?

2. Stability with respect to data perturbations ?

3. How large should we take n compared to m ?

A typical trade-off :

If m is small : high amount of regularization, stabilizes the method, but Vm has poor
approximation properties.

If m is large : better approximation properties, but the method may become unstable
and therefore unaccurate (also in the noiseless case).

How can we describe the optimal compromise ?

Can we have stable and accurate approximations with n = O(m) samples ?

How does this depend on the distribution of the samples xi ?
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A stochastic setting

Recall that we measure approximation error in the L2(X , ρ) norm,

‖v‖2 :=

∫
X
|v(x)|2dρ,

where ρ is a probability measure.

Pick the xi independently at random according to another probability measure µ over
X , requiring that

dρ = w dµ.

Therefore, as n gets large

‖v‖2
n =

1

n

n∑
i=1

w(xi )|v(xi )|
2 ∼

∫
X
w(x)|v(x)|2dµ = ‖v‖2,

and one has E(‖v‖2
n) = ‖v‖2.

Trivial choice : w = 1 and ρ = µ, unweighted least-squares.

Our analysis reveals that there is a substantial interest in not going for this choice
(similar to importance sampling).

Earlier avocated in work by Narayan, Doostan-Hampton on polynomial regression
(2015).
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Stability and accuracy

We want to compare the least-square approximation error ‖u − uW ‖ with the best
approximation error in the L2(X , ρ) norm

em(u) := inf
v∈Vm

‖u − v‖,

This comparison is tied to the stability of the weighted least-squares method.

If L1, . . . , Lm is an orthonormal basis of Vm for the L2(X , ρ) norm, the Grammian
matrix

G = (Gk,j ) :=
( 1

n

n∑
i=1

w(xi )Lk (xi )Lj (xi )
)
, .

involved in the normal equations satisfies E(G) = I .

Our analysis relies on a probabilisty control of ‖G − I‖, where ‖M‖ is the spectral
norm of a matrix, or equivalently of the condition number κ(G).

Stable sampling : note that

‖G − I‖ ≤ δ ⇐⇒ (1 − δ)‖v‖2 ≤ ‖v‖2
n ≤ (1 + δ)‖v‖2, v ∈ Vm

By convention, we set uW = 0 in the event where ‖G − I‖ ≥ 1
2

and retain it
otherwise.
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The key ingredient to our analysis

Let L1, . . . , Lm be an orthonormal basis of Vm for the L2(X , ρ) norm. We introduce

km,w (x) := w(x)
m∑
j=1

|Lj (x)|
2,

and

Km,w := ‖km,w‖L∞ = sup
x∈X

w(x)
m∑
j=1

|Lj (x)|
2.

Both are independent on the choice orthonormal basis : only depends on (Vm, ρ,w).

Since
∫
X km,wdµ =

∑m
j=1 ‖Lj‖2 = m, one has

Km,w ≥ m.

In the case w = 1, we obtain the Christoffel function km(x) :=
∑m

j=1 |Lj (x)|
2, which is

the diagonal of the orthogonal projection kernel onto Vm, and such that

Km := ‖km‖L∞ = max
v∈Vm

‖v‖2
L∞

‖v‖2
.
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Sample result in the noiseless case (Cohen-Migliorati 2017, Doostan-Hampton 2015)

Let 0 < ε < 1 be arbitrary. Under the condition

Km,w ≤ c
n

log(2m/ε)
, c :=

1 − log 2

2
,

the weighted least-squares approximation is

(i) stable : one has the deviation bound

Pr
{
‖G − I‖ ≥

1

2

}
≤ ε.

(ii) accurate : one has

E(‖u − uW ‖2) ≤ (1 + δ(n))em(u)
2 + ε‖u‖2, δ(n) :=

c

log(2m/ε)
.

Variant to these results : error bounds in probability, noisy case.

Typical choice : ε = m−r for r > 0 larger than approximation rate.

Gives stability condition Km,w <∼
n

log m
, which imposes at least that n>∼m log m.

It can be much more demanding if Km,w >> m.
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Where does the stability condition comes from

We may write

G =
1

n

n∑
i=1

Xi ,

where Xi are i.i.d. copies of the m ×m rank one random matrix

X = w(x)(Lk (x)Lj (x))j,k=1,...,m,

which has expectation E(X) = I.

Matrix Chernoff bound (Ahlswede-Winter 2000, Tropp 2011) : if ‖X‖ ≤ K a.s., then

Pr
{∥∥∥ 1

n

n∑
i=1

Xi − E(X)
∥∥∥ ≥ δ} ≤ 2m exp

(
−
nc(δ)

K

)
,

where c(δ) := δ + (1 − δ) log(1 − δ) > 0 (in particular c( 1
2
) := c = 1−log 2

2
).

Here K = supx∈X w(x)
∑m

j=1 |Lj (x)|
2 = Km,w .

Therefore Km,w ≤ c n
log(2m/ε)

=⇒ Pr{‖G − I‖ ≥ 1
2
} ≤ ε.
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The unweighted case w = 1

The stability regime is described by the condition Km = ‖km‖L∞ <∼ n
log m

.

We can estimate the Christoffel function km(x) =
∑m

j=1 |Lj (x)|
2 in cases of practical

interest.

A simple example : X = [−1, 1] and Vm = Pm−1 the univariate polynomials.

(i) Distribution ρ = dx

π
√

1−x2
: the Lj are the Chebychev polynomials and

Km = 2m + 1. Up to log factors, the stability regime is n>∼m.

(ii) Uniform distribution ρ = dx
2

: the Lj are normalized Legendre polynomials and

Km =
∑m

j=1(2j − 1) = m2. Up to log factors, the stability regime is n>∼m2.

These regimes are confirmed numerically.
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Illustration

Regime of stability : probability that κ(G) ≤ 3, white if 1, black if 0.

Left : for ρ = dx

π
√

1−x2
. Center : for ρ = dx

2
.

Right : the gaussian case X = R and ρ = g(x)dx , where g(x) := 1√
2π

e−x2/2, for which

the Lj are the Hermite polynomials.

The unweighted theory cannot handle this case since Km =∞
A more ad-hoc analysis shows that stability holds if n>∼ exp(cm) and this regime is
observed numerically.



Illustration

Regime of stability : probability that κ(G) ≤ 3, white if 1, black if 0.

Left : for ρ = dx

π
√

1−x2
. Center : for ρ = dx

2
.

Right : the gaussian case X = R and ρ = g(x)dx , where g(x) := 1√
2π

e−x2/2, for which

the Lj are the Hermite polynomials.

The unweighted theory cannot handle this case since Km =∞
A more ad-hoc analysis shows that stability holds if n>∼ exp(cm) and this regime is
observed numerically.



High dimensions : parametric PDE’s

Prototype example : elliptic PDE’s on some domain D ⊂ R2 or R3 with affine
parametrization of the diffusion function by x = (x1, . . . , xd ) ∈ X = [−1, 1]d

−div(a∇u) = f , a = ā +

d∑
j=1

xjψj ,

with ellipticity assumption 0 < r < a < R for all x ∈ X , so x 7→ u(x) ∈ V = H1
0 (D).

With Λ ⊂ Nd , approximation by multivariate polynomial space

VΛ :=

∑
ν∈Λ

vνx
ν, vν ∈ V

 = V ⊗ PΛ,

where xν = xν1
1 · · · x

νd
d .

We only consider downward closed index sets : ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

Basis of PΛ : tensorized orthogonal polynomials Lν(x) =
∏d

j=1 Lνj (xj ) for ν ∈ Λ.
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Downward closed multivariate polynomials

ν
2

ν
1



Breaking the curse of dimensionality

Cohen-DeVore-Schwab (2011) + Bachmayr-Migliorati (2016) : approximation results.

Under suitable summability conditions on (|ψj |)j≥1, there exists a sequence of
downward closed sets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λm . . . , with m := #(Λm) such that

inf
v∈Vm

‖u − v‖L2(X ,V ,ρ) ≤ Cm−s ,

with Vm := VΛm , where ρ is any tensorized Jacobi measures. The exponent s > 0 is
robust with respect to the dimension d .

Chkifa-Cohen-Nobile-Tempone (M2AN, 2014) : estimate Km for PΛm .

With ρ = ⊗d ( dx
2
) the uniform distribution over X , one has Km ≤ m2 for all downward

closed sets Λm such that #(Λm) = m. Up to log factors, the stability regime is n>∼m2.

With the tensor-product Chebychev measure, improvement Km ≤ mα with α := log 3
log 2

.

The theory and least-square method is not capable of handling lognormal diffusions :

a = exp(b), b =

d∑
i=1

xjψj , xi ∼ N (0, 1) i.i.d.

which corresponds to the tensor product Gaussian measure over X = Rd .
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Optimal sampling for weighted least-squares

In the weighted least-square method, we sample according to dµ such that dρ = wdµ.

The stability condition is Km,w <∼
n

log m
, where Km,w := supx∈X w(x)km(x).

Optimal choice : take

w(x) = wm(x) =
m

km(x)
⇐⇒ dµ =

km

m
dρ =

1

m

( m∑
j=1

|Lj |
2
)
dρ,

Then dµ is a probability measure and we have km,w = m.

Therefore, up to log factors, the stability regime is n>∼m independently of ρ.
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Then dµ is a probability measure and we have km,w = m.

Therefore, up to log factors, the stability regime is n>∼m independently of ρ.

Stability regime for univariate polynomials with ρ Chebychev, uniform, and Gaussian.



Sampling the optimal density

The optimal sampling measure µ now depends on Vm :

dµ = dµm =
km

m
dρ =

1

m

( m∑
j=1

|Lj |
2
)
dρ.

In the case of parametric PDEs approximated with multivariate polynomials, dρ is a
product measure (easy to sample), but dµm is not.

Sampling strategies in high dimension :

(i) Monte Carlo Markov Chain (MCMC) : generate by simple recursive rules a sample
such that the the probability distribution asymptotically approaches dµm.

(ii) Conditional sampling : obtains first component by sampling the marginal dµ1(x1),
then the second component by sampling the conditional marginal probability dµx1 (x2)
for this choice of the first component, etc...

This second strategy is more efficient on our cases of interest.
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Adaptivity

Update adaptively the polynomial space Λm−1 → Λm, while increasing the amount of
sample necessary for stability n = n(m) ∼ m log m.

ν
2

ν
1

Problem : the optimal measure µ = µm changes as we vary m. How should we recycle
the previous samples ?

For certain simple cases µm ∼ µ∗ as m→∞ (equilibrium measure for univariate
polynomials on [−1, 1]). But no such asymptotic in general cases.
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Sequencial sampling

Observe that

dµm =
1

m

( m∑
j=1

|Lj |
2
)
dρ =

(
1 −

1

m

)
dµm−1 +

1

m
dνm where dνm = |Lm |

2dρ.

We use this mixture property to generate the sample in an incremental manner.

Assume that the sample Sm−1 = {x1, . . . , xn(m−1)} have been generated by independent
draw according to the distribution dµm−1.

Then we generate a new sample Sm = {x1, . . . , xn(m)} as follows :

For each i = 1, . . . , n(m), pick Bernoulli variable bi ∈ {0, 1} with probability { 1
m
, 1− 1

m
}.

If bi = 0, generate xi according to dνm.

If bi = 1, pick xi incrementally inside Sm−1. If Sm−1 has been exhausted generate xi
according to dµm−1.

Arras-Bachmayr-Cohen-Migliorati (2018) : the total number of sample ñ(m) used at
stage m satisfies E(ñ(m)) ∼ m log(m) and ñ(m)<∼m log(m) with high probability for all

values of m. With high probability, the matrix G satisfies κ(G) ≤ 3 for all values of m.
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Conclusions

Optimal sampling yields stable least-squares method under the regime n ∼ m log m.

Applicable to any measure ρ and spaces Vm, in any dimension.

Optimality can be preserved in a sequencial framework.

Perspective : adaptive weighted least-squares strategies for the selection of Λm.

Convergence results are in expectation or in probability. Deterministic sampling ?
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