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Structured Sparsity

The support is not only sparse, but, in addition,
we have prior information about its structure.

Examples

The variables should be selected in groups.

The variables lie in a hierarchy.

The variables lie on a graph or network and the support should be
localized or densely connected on the graph.
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Applications: Difficult inverse problem in Brain Imaging
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Jenatton et al. (2011b)
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Convex relaxation for classical sparsity

Empirical risk: for w ∈ Rd ,

L(w) =
1

2n

n∑
i=1

(yi − x>i w)2

Support of the model:

Supp(w) = {i | wi 6= 0}.

Penalization for variable selection

min
w∈Rd

L(w) + λ |Supp(w)|

Lasso

min
w∈Rd

L(w) + λ‖w‖1

|Supp(w)| =
n∑

i=1

1{wi 6=0}

0 0 1−1 0 1−1
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Formulation with combinatorial functions

Let V = {1, . . . , d}.

Let L be some empirical risk such as L(w) = 1
2n

∑n
i=1(yi − x>i w)2.

Given a set function F : 2V 7→ R+ consider

min
w∈Rd

L(w) + F (Supp(w))

Examples of combinatorial functions

Use recursivity or counts of structures (e.g. tree) with DP

Block-coding (Huang et al., 2011)

G̃ (A) = min
Bi

F (B1) + . . .+ F (Bk) s.t. B1 ∪ . . . ∪ Bk ⊃ A

Submodular functions
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Block-coding (Huang, Zhang and Metaxas (2009))

A

Bi

p1

F+ : 2V → R+ a positive set function.

F∪(A) = min
S

∑
B∈S

F+(B) s.t. A ⊂
⋃
B∈S

B.

→ minimal weighted cover set problem.

Guillaume Obozinski Unified perspective on convex structured sparsity 7/39



A relaxation for F ...?

How to solve?
min
w∈Rd

L(w) + F (Supp(w))

→ Greedy algorithms

→ Non-convex methods

→ Relaxation

|A| F (A)

L(w) + λ |Supp(w)| L(w) + λF (Supp(w))

↓ ↓ ?

L(w) + λ ‖w‖1 L(w) + λ ...?...
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Penalizing and regularizing...

Given a function F : 2V → R̄+, consider for ν, µ > 0 the combined
penalty:

pen(w) = µF (Supp(w)) + ν ‖w‖pp.

Motivations

Compromise between variable selection and smooth regularization

Required for functions F allowing large supports

Interpretable as a description length for the parameters w .
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A convex and homogeneous relaxation

Looking for a convex relaxation of pen(w).

Require as well that it is positively homogeneous → scale invariance.

Definition (Homogeneous extension of a function g)

gh : x 7→ inf
λ>0

1

λ
g(λx).

Proposition

The tightest convex positively homogeneous lower bound of a function g
is the convex envelope of gh.

Leads us to consider:

penh(w) = inf
λ>0

1

λ

(
µF (Supp(λw)) + ν ‖λw‖pp

)
∝ Θ(w) := ‖w‖p F (Supp(w))1/q with

1

p
+

1

q
= 1.
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Envelope of the homogeneous penalty Θ
Consider Ωp with dual norm

Ω∗p(s) = max
A⊂V ,A 6=∅

‖sA‖q
F (A)1/q

.

Proposition

The norm Ωp is the convex envelope (tightest convex lower bound) of
the function w 7→ ‖w‖p F (Supp(w))1/q.

Proof.

Denote Θ(w) = ‖w‖p F (Supp(w))1/q:

Θ∗(s) = max
w∈Rd

w>s − ‖w‖p F (Supp(w))1/q

= max
A⊂V

max
wA∈RA

w>A sA − ‖wA‖p F (A)1/q

= max
A⊂V

ι{‖sA‖q6F (A)1/q} = ι{Ω∗p (s)61}
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Graphs of the different penalties

F (Supp(w)) pen(w) = µF (Supp(w)) + ν ‖w‖2
2
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Graphs of the different penalties

Θ(w) =
√
F (Supp(w))‖w‖2 ΩF (w)
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A large latent group Lasso (Jacob et al., 2009)

V = {v = (vA)A⊂V ∈
(
RV
)2V

s.t. Supp(vA) ⊂ A}

Ωp(w) = min
v∈V

∑
A⊂V

F (A)
1
q ‖vA‖p s.t. w =

∑
A⊂V

vA,

w

v{1} v{2} v{1,2} v{1,2,3,4}... ...

+ + + + + + + + + + + + + +=
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Some simple examples

F Ωp

|A| ‖w‖1

1{A 6=∅} ‖w‖p
If G is a partition:

∑
B∈G 1{A∩B 6=∅}

∑
B∈G ‖wB‖p

If G is not a partition:
∑

B∈G 1{A∩B 6=∅} new: Overlap count Lasso
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Combinatorial norms as atomic norms

F (A) = |A|1/2

F (A) =
1{A∩{1,2,3}6=∅}
+ 1{A∩{2,3}6=∅}
+ 1{A∩{3}6=∅}

ΘF
2 (w) ΩF

2 (w)
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Relation between combinatorial functions and norms

Name F (A) Norm Ωp

cardinality |A| Lasso (`1)

nb of groups
∑

B∈G 1{A∩B 6=∅} Group Lasso (`1/`p)

nb of groups δA,A ∈ G,+∞ else Latent group Lasso

max. nb of el./group maxB∈G |A ∩ B| Exclusive Lasso (`p/`1)

constant 1{A 6=∅} `p-norm

func. of cardinality h(|A|), h sublinear

1{A 6=∅} ∨ |A|k k-support norm (p = 2)

func. of cardinality h(|A|), h concave OWL (for p =∞)

λ1|A|+ λ2

[(
d
k

)
−
(
d−|A|

k

)]
OSCAR (p =∞, k = 2)∑|A|

i=1 Φ−1
(
1− qi

2d

)
SLOPE (p =∞)

chain length h(max(A)) wedge penalty
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Is the relaxation “faithful” to the original function

Consider V = {1, . . . , p} and the function

F (A) = range(A) = max(A)−min(A) + 1.

→ Leads to the selection of interval patterns.

What is its convex relaxation?

Easy to show that |A| must have the same relaxation.

⇒ ΩF
p (w) = ‖w‖1

The relaxation fails

⇒ What are the good functions F?

→ Good functions are Lower Combinatorial Envelopes (LCE)

Submodular functions are LCEs !
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Min-cover vs Overlap count functions
Given a collection of sets G with weights (dB)B∈G ...
... two natural functions to consider:

Min-cover

F∪(A) := inf
S⊂G

{∑
B∈S

dB | A ⊂
⋃
B∈S

B
}

:

F∪,− is the corresponding fractional min-cover value

Overlap count

F∩(A) =
∑
B∈G

dB 1{A∩B 6=∅}

counting the number of set of G intersected

“maximal cover” by elements of G
F∩ is a submodular function (as a sum of submodular functions).
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Latent group Lasso vs Overlap count Lasso vs `1/`p

G = {{1, 2}{2, 3}}.

ΩF∪
2 (w) ≤ 1 ΩF∩

2 (w) ≤ 1 ‖w{1,2}‖2+‖w{2,3}‖2≤1

F∩(A) = 1{A∩{1,2}6=∅} + 1{A∩{2,3}6=∅},

F∪(A) = min
δ,δ′

{
δ + δ′ | 1A ≤ δ 1{1,2} + δ′ 1{2,3}

}
.
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Hierarchical sparsity
Consider a DAG, with

Ai ,Di ancestors/descendants sets of i
including itself.

Significant literature: Zhao et al.

(2009); Yuan et al. (2009); Jenatton et al.

(2011c); Mairal et al. (2011); Bien et al.

(2013); Yan and Bien (2015) and many

others...

e.g. formulations with
`1/`p-norms (Zhao et al., 2009; Jenatton

et al., 2011c)

Ω(w) =
∑
i∈V
‖wD(i)‖2, with

efficient algorithms for tree-structured
groups.

11

22 33

44 55 66
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Combinatorial functions for strong hierarchical sparsity
Consider a DAG, with

Ai ,Di ancestors/descendants sets of i
including itself.

Strong hierarchical sparsity:

“A node can be selected only if all its
ancestors are selected”.

Overlap count with Di :

F∩(B) :=
∑
i∈V

di 1{B∩Di 6=∅} =
∑
i∈AB

di ,

vs Min-cover with Ai :

F∪(B) := inf
I⊂V

{∑
i∈I

fi | B ⊂
⋃
i∈I

Ai

}
.

11

22 33

44 55 66
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Results for different types of graphs

Chains

Families F∩ and F∪ are equivalent

Norms and prox can be computed using algorithms for isotonic
regression.

Trees

Families F∩ and F∪ are different

Norms and prox for F∩ can be computed using a decomposition
algorithm.

No efficient algorithm known for F∪.

DAGs

Norms and prox for F∩ can be computed using general connexion
with isotonic regressions on DAGs.

No efficient algorithm known for F∪.
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Sublinear functions of the cardinality

F (A) =
d∑

k=1

fk 1{|A|=k},

and F− must be sublinear.

Let |s|(1) ≥ . . . ≥ |s|(d) be the reverse order statistics of the entries of s.
Then

Ω∗p(w) = max
1≤j≤d

1

f
1/q
j

[
j∑

i=1

|s|q(i)

]1/q

First example

F+(A) =

{
1 if |A| = k

∞ o.w.

recovers the k-support norm of Argyriou et al.
(2012) (p = 2).
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Concave functions of the cardinality

If k 7→ fk is concave then we have

Ω∞(w) =
d∑

i=1

(fi − fi−1) |w |(i).

Ordered weighted Lasso (OWL) (Figueiredo and Nowak, 2014)

Examples

OSCAR (Bondell and Reich, 2008): = λ1‖w‖1 + λ2Ω(w) with

Ω(w) =
∑
i<j

max
(
|wi |, |wj |

)
obtained with fk =

(d
2

)
−
(d−k

2

)
SLOPE (Bogdan et al., 2015): fk =

k∑
i=1

Φ−1
(

1− qi

2d

)
Guillaume Obozinski Unified perspective on convex structured sparsity 29/39



Computations and extensions of OWL

Since F is submodular, ΩF
∞ is a linear function of |w | if the order of the

coefficients is fixed. Computational problem can therefore be reduced to
the case of the chain.

Proposition (Figueiredo and Nowak, 2014)

In the p =∞ case the proximal operator can be computed efficiently via
isotonic regression and PAVA.

Proposition (`p-OWL norms)

Norm definitions and efficient computations of
norms and proximal operators can be naturally
extended to ΩF

p via isotonic regression and PAVA.
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An example: penalizing the range
Structured prior on support (Jenatton et al., 2011a):

the support is an interval of {1, . . . , p}

Natural associated penalization:
F (A) = range(A) = imax(A)− imin(A) + 1.

→ F is not submodular...

→ G (A) = |A|
But F (A) : = d − 1 + range(A) is submodular !

In fact F (A) =
∑

B∈G 1{A∩B 6=∅} for B of the form:

Jenatton et al. (2011a) considered Ω(w) =
∑

B∈B ‖wB ◦ dB‖2.
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Experiments
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Figure: Signals

S1 constant

S2 triangular shape

S3 x 7→ | sin(x) sin(5x)|
S4 a slope pattern

S5 i.i.d. Gaussian pattern

Compare:

Lasso

Elastic Net

Naive `2 group-Lasso

Ω2 for F (A) = d − 1 + range(A)

Ω∞ for F (A) = d − 1 + range(A)

The weighted `2 group-Lasso of
(Jenatton et al., 2011a).
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Constant signal
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Triangular signal
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(x1, x2) 7→ | sin(x1) sin(5x1) sin(x2) sin(5x2)| signal in 2D
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i.i.d Random signal in 2D
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Summary

A convex relaxation for functions penalizing

(a) the support via a general set function
(b) the `p norm of the parameter vector w .

Retrieves a large fraction of the norms used (Lasso, group Lasso,
Exclusive Lasso, OSCAR, OWL, SLOPE, etc).

Generic efficient algorithms for chains/trees/graphs-OCL

Open: efficient prox computation for tree/DAG for F∩
Alternative fast column generation/FCFW algorithm
(Vinyes and Obozinski, 2017).

Did not talk about general support recovery and fast rates
convergence that can be obtained based on generalization of the
irrepresentability condition/restricted eigenvalue condition.
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