A unified perspective on convex structured sparsity

École des Ponts ParisTech

Guillaume Obozinski

Laboratoire d'Informatique Gaspard Monge

École des Ponts ParisTech

Joint work with Francis Bach

Conférence Mascot-Num Ecole Centrale de Nantes, 21 mars 2018 The support is not only **sparse**, but, in addition, we have prior information about its **structure**.

Examples

- The variables should be selected in groups.
- The variables lie in a hierarchy.
- The variables lie on a graph or network and the support should be localized or densely connected on the graph.

Applications: Difficult inverse problem in Brain Imaging

Jenatton et al. (2011b)

Convex relaxation for classical sparsity

• Empirical risk: for $w \in \mathbb{R}^d$,

$$L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - x_i^{\top} w)^2$$

$$|\mathrm{Supp}(w)| = \sum_{i=1}^n \mathbb{1}_{\{w_i \neq 0\}}$$

0

• Support of the model:

 $\mathrm{Supp}(w) = \{i \mid w_i \neq 0\}.$

Penalization for variable selection

 $\min_{w\in\mathbb{R}^d} L(w) + \lambda \left| \mathrm{Supp}(w) \right|$

Lasso

 $\min_{w\in\mathbb{R}^d} L(w) + \lambda \|w\|_1$

Formulation with combinatorial functions

Let
$$V = \{1, ..., d\}$$
.

Let *L* be some empirical risk such as $L(w) = \frac{1}{2n} \sum_{i=1}^{n} (y_i - x_i^{\top} w)^2$.

Given a set function $F : 2^V \mapsto \mathbb{R}_+$ consider

 $\min_{w\in\mathbb{R}^d}L(w)+F(\mathrm{Supp}(w))$

Examples of combinatorial functions

- Use recursivity or counts of structures (e.g. tree) with DP
- Block-coding (Huang et al., 2011)

$$\widetilde{G}(A) = \min_{B_i} F(B_1) + \ldots + F(B_k)$$
 s.t. $B_1 \cup \ldots \cup B_k \supset A$

Submodular functions

Block-coding (Huang, Zhang and Metaxas (2009))

 $F_+: 2^V \to \overline{\mathbb{R}}_+$ a positive set function.

$$F_{\cup}(A) = \min_{\mathcal{S}} \sum_{B \in \mathcal{S}} F_{+}(B)$$
 s.t. $A \subset \bigcup_{B \in \mathcal{S}} B$.

\rightarrow minimal weighted cover set problem.

A relaxation for F...?

How to solve?

$$\min_{w\in\mathbb{R}^d}L(w)+F(\mathrm{Supp}(w))$$

- $\rightarrow \ \, {\rm Greedy} \ \, {\rm algorithms}$
- \rightarrow Non-convex methods
- \rightarrow Relaxation

$$|A|$$
 $F(A)$ $L(w) + \lambda |\operatorname{Supp}(w)|$ $L(w) + \lambda F(\operatorname{Supp}(w))$ \downarrow \downarrow ? $L(w) + \lambda ||w||_1$ $L(w) + \lambda ...?...$

Penalizing and regularizing...

Given a function $F: 2^V \to \bar{\mathbb{R}}_+$, consider for $\nu, \mu > 0$ the combined penalty:

$$\operatorname{pen}(w) = \mu F(\operatorname{Supp}(w)) + \nu \|w\|_{\rho}^{\rho}.$$

Motivations

- Compromise between variable selection and smooth regularization
- Required for functions F allowing large supports
- Interpretable as a *description length* for the parameters w.

A convex and homogeneous relaxation

- Looking for a convex relaxation of pen(w).
- Require as well that it is *positively homogeneous* \rightarrow scale invariance.

Definition (Homogeneous extension of a function g)

$$g_h: x \mapsto \inf_{\lambda>0} \frac{1}{\lambda} g(\lambda x).$$

Proposition

The tightest convex positively homogeneous lower bound of a function g is the convex envelope of g_h .

Leads us to consider:

$$pen_h(w) = \inf_{\lambda>0} \frac{1}{\lambda} \left(\mu F(\operatorname{Supp}(\lambda w)) + \nu \|\lambda w\|_p^p \right)$$
$$\propto \Theta(w) := \|w\|_p F(\operatorname{Supp}(w))^{1/q} \quad \text{with} \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Envelope of the homogeneous penalty Θ Consider Ω_p with dual norm

$$\Omega_p^*(s) = \max_{A \subset V, A \neq \varnothing} \frac{\|s_A\|_q}{F(A)^{1/q}}$$

Proposition

The norm Ω_p is the convex envelope (tightest convex lower bound) of the function $w \mapsto ||w||_p F(\operatorname{Supp}(w))^{1/q}$.

Proof.

Denote $\Theta(w) = ||w||_{\rho} F(\operatorname{Supp}(w))^{1/q}$:

$$\Theta^{*}(s) = \max_{w \in \mathbb{R}^{d}} w^{\top} s - \|w\|_{p} F(\operatorname{Supp}(w))^{1/q}$$

=
$$\max_{A \subset V} \max_{w_{A} \in \mathbb{R}^{A}} w_{A}^{\top} s_{A} - \|w_{A}\|_{p} F(A)^{1/q}$$

=
$$\max_{A \subset V} \iota_{\{\|s_{A}\|_{q} \leqslant F(A)^{1/q}\}} = \iota_{\{\Omega_{p}^{*}(s) \leqslant 1\}}$$

Graphs of the different penalties

Graphs of the different penalties

A large latent group Lasso (Jacob et al., 2009)

$$\mathcal{V} = \{ v = (v^A)_{A \subset V} \in \left(\mathbb{R}^V \right)^{2^V} \text{ s.t. } \operatorname{Supp}(v^A) \subset A \}$$

$$\Omega_{
ho}(w) = \min_{v \in \mathcal{V}} \sum_{A \subset V} F(A)^{rac{1}{q}} \| v^A \|_{
ho} \quad ext{s.t.} \quad w = \sum_{A \subset V} v^A,$$

Some simple examples

Combinatorial norms as atomic norms

Relation between combinatorial functions and norms

Name	F(A)	Norm Ω_p
cardinality	<i>A</i>	Lasso (ℓ_1)
nb of groups	$\sum_{B\in\mathcal{G}} 1_{\{A\cap B eq \varnothing\}}$	Group Lasso (ℓ_1/ℓ_p)
nb of groups	$\delta_{\mathcal{A}}, \mathcal{A} \in \mathcal{G}, +\infty$ else	Latent group Lasso
max. nb of el./group	$\max_{B\in\mathcal{G}} A\cap B $	Exclusive Lasso (ℓ_p/ℓ_1)
constant	$1_{\{A eq arnothing\}}$	$\ell_{ m p}$ -norm
func. of cardinality	h(A), h sublinear	
	$1_{\{A eq arnothing\}} ee rac{ A }{k}$	k-support norm ($p = 2$)
func. of cardinality	h(A), h concave	OWL (for $p=\infty$)
	$\lambda_1 A + \lambda_2 \left[\binom{d}{k} - \binom{d- A }{k} \right]$	OSCAR ($p = \infty, k = 2$)
	$\sum_{i=1}^{ A } \Phi^{-1}ig(1-rac{qi}{2d}ig)$	SLOPE ($p = \infty$)
chain length	$h(\max(A))$	wedge penalty

Is the relaxation "faithful" to the original function

Consider $V = \{1, \dots, p\}$ and the function

$$F(A) = \operatorname{range}(A) = max(A) - min(A) + 1.$$

 \rightarrow Leads to the selection of interval patterns.

What is its convex relaxation?

• Easy to show that |A| must have the same relaxation.

$$\Rightarrow \Omega_p^F(w) = \|w\|_1$$

The relaxation fails

- \Rightarrow What are the good functions *F*?
 - → Good functions are *Lower Combinatorial Envelopes* (LCE)
 - Submodular functions are LCEs !

Min-cover vs Overlap count functions

Given a collection of sets \mathcal{G} with weights $(d_B)_{B \in \mathcal{G}}$ two natural functions to consider:

Min-cover

$$F_{\cup}(A) := \inf_{\mathcal{S} \subset \mathcal{G}} \left\{ \sum_{B \in \mathcal{S}} d_B \mid A \subset \bigcup_{B \in \mathcal{S}} B \right\} :$$

• $F_{\cup,-}$ is the corresponding *fractional* min-cover value

Overlap count

$$F_{\cap}(A) = \sum_{B \in \mathcal{G}} d_B \, \mathbb{1}_{\{A \cap B
eq arnothing\}}$$

- \bullet counting the number of set of ${\mathcal G}$ intersected
- "maximal cover" by elements of ${\mathcal G}$
- F_{\cap} is a *submodular* function (as a sum of submodular functions).

Latent group Lasso vs Overlap count Lasso vs ℓ_1/ℓ_p

 $\mathcal{G} = \{\{1,2\}\{2,3\}\}.$

$$\begin{split} F_{\cap}(A) &= \ 1_{\{A \cap \{1,2\} \neq \varnothing\}} + 1_{\{A \cap \{2,3\} \neq \varnothing\}}, \\ F_{\cup}(A) &= \ \min_{\delta,\delta'} \{\delta + \delta' \mid 1_A \le \delta \, 1_{\{1,2\}} + \delta' \, 1_{\{2,3\}} \}. \end{split}$$

Hierarchical sparsity

Consider a DAG, with

- *A_i*, *D_i* ancestors/descendants sets of *i* including itself.
- Significant literature: Zhao et al. (2009); Yuan et al. (2009); Jenatton et al. (2011c); Mairal et al. (2011); Bien et al. (2013); Yan and Bien (2015) and many others...
- e.g. formulations with ℓ_1/ℓ_p -norms (Zhao et al., 2009; Jenatton et al., 2011c)

$$\Omega(w) = \sum_{i \in V} \|w_{D(i)}\|_2, \quad ext{with}$$

Combinatorial functions for strong hierarchical sparsity

Consider a DAG, with

• *A_i*, *D_i* ancestors/descendants sets of *i* including itself.

Strong hierarchical sparsity:

"A node can be selected only if **all** its ancestors are selected".

Overlap count with *D_i*:

$$F_{\cap}(B) := \sum_{i \in V} d_i \, \mathbbm{1}_{\{B \cap D_i \neq \varnothing\}} = \sum_{i \in A_B} d_i,$$

vs Min-cover with A_i:

$$F_{\cup}(B) := \inf_{I \subset V} \Big\{ \sum_{i \in I} f_i \mid B \subset \bigcup_{i \in I} A_i \Big\}.$$

Results for different types of graphs

Chains

- Families F_{\cap} and F_{\cup} are equivalent
- Norms and prox can be computed using algorithms for isotonic regression.

Trees

- Families F_{\cap} and F_{\cup} are different
- Norms and prox for F_{\cap} can be computed using a *decomposition* algorithm.
- No efficient algorithm known for F_{\cup} .

DAGs

- Norms and prox for F_{\cap} can be computed using general connexion with isotonic regressions on DAGs.
- No efficient algorithm known for F_{\cup} .

Sublinear functions of the cardinality

$$F(A) = \sum_{k=1}^{d} f_k \, \mathbb{1}_{\{|A|=k\}},$$

and F_{-} must be sublinear.

Let $|s|_{(1)} \geq \ldots \geq |s|_{(d)}$ be the reverse order statistics of the entries of s. Then

$$\Omega_p^*(w) = \max_{1 \le j \le d} \frac{1}{f_j^{1/q}} \left[\sum_{i=1}^j |s|_{(i)}^q \right]^{1/q}$$

First example

$$F_+(A) = egin{cases} 1 & ext{if } |A| = k \ \infty & ext{o.w.} \end{cases}$$

recovers the k-support norm of Argyriou et al. (2012) (p = 2).

Concave functions of the cardinality

If $k \mapsto f_k$ is concave then we have

$$\Omega_{\infty}(w) = \sum_{i=1}^{d} (f_i - f_{i-1}) |w|_{(i)}.$$

Ordered weighted Lasso (OWL) (Figueiredo and Nowak, 2014)

Examples

۰

• OSCAR (Bondell and Reich, 2008): $= \lambda_1 \|w\|_1 + \lambda_2 \Omega(w)$ with

$$\Omega(w) = \sum_{i < j} \max(|w_i|, |w_j|) \quad \text{obtained with} \quad f_k = {d \choose 2} - {d-k \choose 2}$$

SLOPE (Bogdan et al., 2015):
$$f_k = \sum_{i=1}^k \Phi^{-1} \left(1 - \frac{qi}{2d}\right)$$

Computations and extensions of OWL

Since *F* is submodular, Ω_{∞}^{F} is a linear function of |w| if the order of the coefficients is fixed. Computational problem can therefore be reduced to the case of the chain.

Proposition (Figueiredo and Nowak, 2014)

In the $p = \infty$ case the proximal operator can be computed efficiently via *isotonic regression* and PAVA.

Proposition (ℓ_p -OWL norms)

Norm definitions and efficient computations of norms and proximal operators can be naturally extended to Ω_p^F via *isotonic regression* and PAVA.

An example: penalizing the range

Structured prior on support (Jenatton et al., 2011a):

• the support is an interval of $\{1, \ldots, p\}$

Natural associated penalization: $F(A) = \operatorname{range}(A) = i_{\max}(A) - i_{\min}(A) + 1.$

 \rightarrow *F* is not submodular...

 \rightarrow G(A) = |A|

But F(A) := d - 1 + range(A) is submodular !

In fact $F(A) = \sum_{B \in \mathcal{G}} \mathbb{1}_{\{A \cap B \neq \varnothing\}}$ for B of the form:

Jenatton et al. (2011a) considered $\Omega(w) = \sum_{B \in \mathcal{B}} \|w_B \circ d_B\|_2$.

Experiments

- S_1 constant
- S_2 triangular shape
- $S_3 x \mapsto |\sin(x)\sin(5x)|$
- S_4 a slope pattern
- S_5 i.i.d. Gaussian pattern

Compare:

- Lasso
- Elastic Net
- Naive ℓ_2 group-Lasso

- Ω_2 for $F(A) = d 1 + \operatorname{range}(A)$
- Ω_{∞} for $F(A) = d 1 + \operatorname{range}(A)$
- The weighted ℓ_2 group-Lasso of (Jenatton et al., 2011a).

Constant signal

Triangular signal

 $(x_1, x_2) \mapsto |\sin(x_1)\sin(5x_1)\sin(x_2)\sin(5x_2)|$ signal in 2D

i.i.d Random signal in 2D

Summary

- A convex relaxation for functions penalizing
 - (a) the support via a general set function
 - (b) the ℓ_p norm of the parameter vector w.
- Retrieves a large fraction of the norms used (Lasso, group Lasso, Exclusive Lasso, OSCAR, OWL, SLOPE, etc).
- Generic efficient algorithms for chains/trees/graphs-OCL
- Open: efficient prox computation for tree/DAG for F_{\cap}
 - Alternative fast column generation/FCFW algorithm (Vinyes and Obozinski, 2017).
- Did not talk about general support recovery and fast rates convergence that can be obtained based on generalization of the irrepresentability condition/restricted eigenvalue condition.

References I

- Argyriou, A., Foygel, R., and Srebro, N. (2012). Sparse prediction with the k-support norm. In Advances in Neural Information Processing Systems 25, pages 1466–1474.
- Bickel, P., Ritov, Y., and Tsybakov, A. (2009). Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705–1732.
- Bien, J., Taylor, J., Tibshirani, R., et al. (2013). A lasso for hierarchical interactions. *The Annals of Statistics*, 41(3):1111–1141.
- Bogdan, M., van den Berg, E., Sabatti, C., Su, W., and Candès, E. J. (2015). SLOPE: adaptive variable selection via convex optimization. *Annals of Applied Statistics*, 9(3):1103–1140.
- Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. *Biometrics*, 64(1):115–123.
- Figueiredo, M. and Nowak, R. D. (2014). Sparse estimation with strongly correlated variables using ordered weighted ℓ_1 regularization. Technical Report 1409.4005, arXiv.
- Groenevelt, H. (1991). Two algorithms for maximizing a separable concave function over a polymatroid feasible region. *Eur. J Oper. Res.*, 54(2):227–236.
- Huang, J., Zhang, T., and Metaxas, D. (2011). Learning with structured sparsity. *The JMLR*, 12:3371–3412.
- Jacob, L., Obozinski, G., and Vert, J. (2009). Group lasso with overlap and graph lasso. In *ICML*.

References II

- Jenatton, R., Audibert, J., and Bach, F. (2011a). Structured variable selection with sparsity-inducing norms. *JMLR*, 12:2777–2824.
- Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Eger, E., Bach, F., and Thirion, B. (2011b). Multi-scale mining of fmri data with hierarchical structured sparsity. *Arxiv* preprint arXiv:1105.0363.
- Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011c). Proximal methods for hierarchical sparse coding. *JMLR*, 12:2297–2334.
- Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. (2011). Convex and network flow optimization for structured sparsity. *JMLR*, 12:2681–2720.
- Vinyes, M. and Obozinski, G. (2017). Fast column generation for atomic norm regularization. In *Artificial Intelligence and Statistics*.
- Wainwright, M. J. (2009). Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 constrained quadratic programming. *IEEE Transactions on Information Theory*, 55:2183–2202.
- Yan, X. and Bien, J. (2015). Hierarchical sparse modeling: A choice of two regularizers. arXiv preprint arXiv:1512.01631.
- Yuan, M., Joseph, V. R., and Zou, H. (2009). Structured variable selection and estimation. The Annals of Applied Statistics, 3(4):1738–1757.
- Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. *The Annals of Statistics*, pages 3468–3497.