Optimal Transport for Imaging and Learning

École nationale de la statistique et de l'administration économique UNIVERSITE PARIS-SACLAY

www.numerical-tours.com

Marco Cuturi

Comparing Measures and Spaces

• Probability distributions and histograms \rightarrow images, vision, graphics and machine learning,

Comparing Measures and Spaces

• Probability distributions and histograms \rightarrow images, vision, graphics and machine learning,

• Optimal transport \rightarrow takes into account a metric d.

2. OT for Machine Learning

Couplings and Optimal Transport

 $\mu = \sum_{i} \mu_i \delta_{x_i}$

Input distributions

Def.

 $\nu = \sum_{j} \nu_{j} \delta_{y_{j}}$ Points $(x_i)_i, (y_j)_j$ Weights $\mu_i \ge 0, \nu_j \ge 0$. $\sum_{i=1}^{N_1} \mu_i = \sum_{j=1}^{N_2} \nu_j = 1$

Couplings

Couplings and Optimal Transport

 $\mu = \sum_i \mu_i \delta_{x_i}$

Input distributions

 $\nu = \sum_{j} \nu_{j} \delta_{y_{j}}$ Points $(x_{i})_{i}, (y_{j})_{j}$ Weights $\mu_{i} \ge 0, \nu_{j} \ge 0$. $\sum_{i=1}^{N_{1}} \mu_{i} = \sum_{j=1}^{N_{2}} \nu_{j} = 1$

$$d_{i,j} = d(x_i, y_j)$$

Def. Couplings $\mathcal{C}_{\boldsymbol{\mu},\boldsymbol{\nu}} \stackrel{\text{def.}}{=} \left\{ T \in \mathbb{R}^{N_1 \times N_2}_+ ; \ T \mathbb{1}_{N_1} = \boldsymbol{\mu}, T^\top \mathbb{1}_{N_2} = \boldsymbol{\nu} \right\}$

Def. Wasserstein Distance / EMD
$$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def.}}{=} \min \left\{ \sum_{i,j} T_{i,j} d_{i,j}^p \; ; \; T \in \mathcal{C}_{\boldsymbol{\mu}, \boldsymbol{\nu}} \right\}$$
[Kantorovich 1942]

 $\rightarrow W_p$ is a distance over Radon probability measures.

Numerical Optimal Transport
Linear programming:

$$\mu = \sum_{i=1}^{N_1} p_i \delta_{x_i}, \nu = \sum_{j=1}^{N_2} p_j \delta_{y_i}$$
Hungarian/Auction: $\sim O(N^3)$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}, \nu = \frac{1}{N} \sum_{j=1}^{N} \delta_{y_j}$$
 $T_{i,j} = \begin{cases} 1/N \text{ if } j = \sigma(i), \\ 0 \text{ otherwise.} \end{cases}$

Entropic Regularization

Entropy: $H(T) \stackrel{\text{def.}}{=} -\sum_{i,j=1}^{N} T_{i,j}(\log(T_{i,j}) - 1)$

Def. Regularized OT: [Cuturi NIPS'13] $\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} - \varepsilon H(T) \; ; \; T \in \mathcal{C}_{\mu,\nu} \right\}$

Entropic Regularization

Entropy: $H(T) \stackrel{\text{def.}}{=} -\sum_{i,j=1}^{N} T_{i,j}(\log(T_{i,j}) - 1)$

Def. Regularized OT: [Cuturi NIPS'13]
$$\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} - \varepsilon H(T) \; ; \; T \in \mathcal{C}_{\mu,\nu} \right\}$$

Regularization impact on solution:

Sinkhorn's Algorithm $\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} + \varepsilon T_{i,j} \log(T_{i,j}) ; T \in \mathcal{C}_{\mu,\nu} \right\} \quad (\star)$

Prop. One has T = diag(a)K diag(b), where $K = e^{-\frac{d^p}{\varepsilon}}$.

Sinkhorn's Algorithm

$$\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} + \varepsilon T_{i,j} \log(T_{i,j}) ; T \in \mathcal{C}_{\mu,\nu} \right\} \quad (\star)$$
Prop. One has $T = \operatorname{diag}(a)K \operatorname{diag}(b)$, where $K = e^{-\frac{d^{p}}{\varepsilon}}$.
Row constraint: $T\mathbb{1}_{N_{2}} = \mu \iff a \odot (Kb) = \mu$
Col. constraint: $T^{\top}\mathbb{1}_{N_{2}} = \nu \iff b \odot (K^{\top}a) = \nu$
Sinkhorn iterations: $a \leftarrow \frac{\mu}{Kb}$ and $b \leftarrow \frac{\nu}{K^{\top}a}$

Sinkhorn's Algorithm

$$\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} + \varepsilon T_{i,j} \log(T_{i,j}) ; T \in \mathcal{C}_{\mu,\nu} \right\} \quad (\star)$$
Prop. One has $T = \operatorname{diag}(a)K \operatorname{diag}(b)$, where $K = e^{-\frac{d^{p}}{\varepsilon}}$.
Row constraint: $T\mathbb{1}_{N_{2}} = \mu \iff a \odot (Kb) = \mu$
Col. constraint: $T^{\top}\mathbb{1}_{N_{2}} = \nu \iff b \odot (K^{\top}a) = \nu$
Sinkhorn iterations: $a \leftarrow \frac{\mu}{Kb}$ and $b \leftarrow \frac{\nu}{K^{\top}a}$
Only matrix/vector multiplications. \rightarrow Parallelizable.
 \rightarrow Streams well on GPU.
 \Rightarrow convolutive/heat structure for K

Sinkhorn's Algorithm

$$\min_{T} \left\{ \sum_{i,j} d_{i,j}^{p} T_{i,j} + \varepsilon T_{i,j} \log(T_{i,j}) ; T \in \mathcal{C}_{\mu,\nu} \right\} \quad (\star)$$
Prop. One has $T = \operatorname{diag}(a)K \operatorname{diag}(b)$, where $K = e^{-\frac{d^{p}}{\varepsilon}}$.
Row constraint: $T\mathbb{1}_{N_{2}} = \mu \iff a \odot (Kb) = \mu$
Col. constraint: $T^{\top}\mathbb{1}_{N_{2}} = \nu \iff b \odot (K^{\top}a) = \nu$
Sinkhorn iterations: $a \leftarrow \frac{\mu}{Kb}$ and $b \leftarrow \frac{\nu}{K^{\top}a}$
Only matrix/vector multiplications. \rightarrow Parallelizable.
 \rightarrow Streams well on GPU.
 \rightarrow convolutive/heat structure for K
 ε
Prop. $(\star) \iff \min_{T} \{ \operatorname{KL}(T|K) ; T \in \mathcal{C}_{\mu,\nu} \}$
Sinkhorn \iff iterative projections.

Generalizations

OT barycenters: $\min_{\nu} \sum_{k} \lambda_k W_2^2(\mu_k, \nu)$

[Agueh, Carlier 2010]

 μ_1

OT barycenters: $\min_{\nu} \sum_{k} \lambda_k W_2^2(\mu_k, \nu)$ [Aqueb. Carlier 2010]

[Agueh, Carlier 2010]

[Solomon et al, SIGGRAPH 2015]

 μ_3

Balanced OT

Unbalanced OT

Unbalanced transport: $\min_{T} \sum_{i,j} d_{i,j}^{p} T_{i,j} + \rho \text{KL}(T \mathbb{1}_{N_{1}} | \boldsymbol{\mu}) + \rho \text{KL}(T^{\top} \mathbb{1}_{N_{2}} | \boldsymbol{\nu})$ [Liereo, Mielke, Savaré 2015]

[Chizat, Schmitzer, Peyré, Vialard 2015] [Kondratyev, Monsaingeon, Vorotnikov, 2015]

Generalizations

 μ

OT barycenters: $\min_{\nu} \sum_{k} \lambda_k W_2^2(\mu_k, \nu)$ [A guab. Carlier 2010]

Unbalanced transport:

[Agueh, Carlier 2010]

[Solomon et al, SIGGRAPH 2015]

 μ_3

Balanced OT

Unbalanced OT

 $\min_{T} \sum_{i,j} d_{i,j}^{p} T_{i,j} + \rho \operatorname{KL}(T \mathbb{1}_{N_{1}} | \boldsymbol{\mu}) + \rho \operatorname{KL}(T^{\top} \mathbb{1}_{N_{2}} | \boldsymbol{\nu})$ [Liereo, Mielke, Savaré 2015] [Chizat, Schmitzer, Peyré, Vialard 2015] [Kondratyev, Monsaingeon, Vorotnikov, 2015]

Gradient flows:

$$\mu_{t+1} = \min_{\mu} \frac{1}{2\tau} W(\mu_t, \mu) + f(\mu)$$

2. OT for Machine Learning

Density Fitting and Generative Models

Observations:
$$\boldsymbol{\nu} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{x}_{i}}$$

Parametric model: $\theta \mapsto \mu_{\theta}$

Density Fitting and Generative Models

Observations:
$$\boldsymbol{\nu} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{x}_{i}}$$

Parametric model: $\theta \mapsto \mu_{\theta}$

Density fitting:
$$d\mu_{\theta}(y) = f_{\theta}(y)dy$$

$$\min_{\theta} \widehat{\mathrm{KL}}(\mu_{\theta}|\nu) \stackrel{\text{def.}}{=} -\sum_{j} \log(f_{\theta}(y_{j})) \qquad \begin{array}{l} \text{Maximum} \\ \text{likelihood (MLE)} \end{array}$$

Density Fitting and Generative Models

Observations:
$$\boldsymbol{\nu} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\boldsymbol{x}_{i}}$$

Parametric model: $\theta \mapsto \mu_{\theta}$

Density fitting:
$$d\mu_{\theta}(y) = f_{\theta}(y)dy$$
$$\min_{\theta} \widehat{\mathrm{KL}}(\mu_{\theta}|\nu) \stackrel{\text{def.}}{=} -\sum \log(f_{\theta}(y_{j})) \quad \text{li}$$

j

Maximum likelihood (MLE)

Generative model fit: $\mu_{\theta} = g_{\theta,\sharp}\zeta$ $\widehat{\mathrm{KL}}(\mu_{\theta}|\nu) = +\infty$

 \rightarrow MLE undefined.

 θ

 \rightarrow Need a weaker metric.

Density fitting: $\min_{\boldsymbol{\theta}} D(\boldsymbol{\mu}_{\boldsymbol{\theta}}, \boldsymbol{\nu})$ $\nu = \frac{1}{P} \sum_{i} \delta_{y_{i}} \quad \mu = \frac{1}{N} \sum_{i} \delta_{x_{i}}$ **Optimal Transport Distances** $W(\boldsymbol{\mu}, \boldsymbol{\nu})^p \stackrel{\text{def.}}{=} \min_{T \in \mathcal{C}_{\boldsymbol{\mu}, \boldsymbol{\nu}}} \sum_{i,j} T_{i,j} \| x_i - y_j \|^p$ Maximum Mean Discrepancy (MMD) $\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{k}^{2} \stackrel{\text{def.}}{=} \frac{1}{N^{2}} \sum_{i,i'} k(x_{i}, x_{i'}) + \frac{1}{P^{2}} \sum_{j,j'} k(y_{j}, y_{j'}) - \frac{2}{NP} \sum_{i,j} k(x_{i}, y_{j})$ Gaussian: $k(x, y) = e^{-\frac{\|x - y\|^{2}}{2\sigma^{2}}}$. Energy distance: $k(x, y) = -\|x - y\|^{2}$. Sinkhorn divergences [Cuturi 13] $W_{\varepsilon}(\boldsymbol{\mu}, \boldsymbol{\nu})^p \stackrel{\text{def.}}{=} \sum_{i,j} T_{i,j}^{\varepsilon} \|x_i - y_j\|^p$ $\overline{W}_{\varepsilon}(\mu,\nu)^{p} \stackrel{\text{def.}}{=} W_{\varepsilon}(\mu,\nu)^{p} - \frac{1}{2}W_{\varepsilon}(\mu,\mu)^{p} - \frac{1}{2}W_{\varepsilon}(\nu,\nu)^{p}$

Density fitting: $\min_{\alpha} D(\mu_{\theta}, \nu)$ $\nu = \frac{1}{P} \sum_{j} \delta_{y_{j}} \quad \mu = \frac{1}{N} \sum_{i} \delta_{x_{i}}$ **Optimal Transport Distances** $W(\boldsymbol{\mu}, \boldsymbol{\nu})^p \stackrel{\text{def.}}{=} \min_{T \in \mathcal{C}_{\boldsymbol{\mu}, \boldsymbol{\nu}}} \sum_{i,j} T_{i,j} \| x_i - y_j \|^p$ Maximum Mean Discrepancy (MMD) $\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{k}^{2} \stackrel{\text{def.}}{=} \frac{1}{N^{2}} \sum_{i,i'} k(x_{i}, x_{i'}) + \frac{1}{P^{2}} \sum_{j,j'} k(y_{j}, y_{j'}) - \frac{2}{NP} \sum_{i,j} k(x_{i}, y_{j})$ Gaussian: $k(x, y) = e^{-\frac{\|x - y\|^{2}}{2\sigma^{2}}}$. Energy distance: $k(x, y) = -\|x - y\|^{2}$. Sinkhorn divergences [Cuturi 13] $W_{\varepsilon}(\mu,\nu)^p \stackrel{\text{\tiny def.}}{=} \sum_{i,j} T_{i,j}^{\varepsilon} \|x_i - y_j\|^p$ $\overline{W}_{\varepsilon}(\mu,\nu)^{p} \stackrel{\text{def.}}{=} W_{\varepsilon}(\mu,\nu)^{p} - \frac{1}{2}W_{\varepsilon}(\mu,\mu)^{p} - \frac{1}{2}W_{\varepsilon}(\nu,\nu)^{p}$

Theorem: [Ramdas, G.Trillos, Cuturi 17] $\bar{W}_{\varepsilon}(\mu,\nu)^{p} \xrightarrow{\varepsilon \to 0} W(\mu,\nu)^{p}$

for
$$k(x, y) = -\|x - y\|^p$$

Density fitting: $\min_{\alpha} D(\mu_{\theta}, \nu)$ $\nu = \frac{1}{P} \sum_{j} \delta_{y_j} \quad \mu = \frac{1}{N} \sum_{i} \delta_{x_i}$ **Optimal Transport Distances** $W(\boldsymbol{\mu}, \boldsymbol{\nu})^p \stackrel{\text{def.}}{=} \min_{T \in \mathcal{C}_{\boldsymbol{\mu}, \boldsymbol{\nu}}} \sum_{i,j} T_{i,j} \| x_i - y_j \|^p$ Maximum Mean Discrepancy (MMD) $\|\boldsymbol{\mu} - \boldsymbol{\nu}\|_{k}^{2} \stackrel{\text{def.}}{=} \frac{1}{N^{2}} \sum_{i,i'} k(x_{i}, x_{i'}) + \frac{1}{P^{2}} \sum_{j,j'} k(y_{j}, y_{j'}) - \frac{2}{NP} \sum_{i,j} k(x_{i}, y_{j})$ Gaussian: $k(x, y) = e^{-\frac{\|x - y\|^{2}}{2\sigma^{2}}}$. Energy distance: $k(x, y) = -\|x - y\|^{2}$. Sinkhorn divergences [Cuturi 13] $W_{\varepsilon}(\mu,\nu)^p \stackrel{\text{\tiny def.}}{=} \sum_{i,j} T_{i,j}^{\varepsilon} \|x_i - y_j\|^p$ $\overline{W}_{\varepsilon}(\mu,\nu)^{p} \stackrel{\text{def.}}{=} W_{\varepsilon}(\mu,\nu)^{p} - \frac{1}{2}W_{\varepsilon}(\mu,\mu)^{p} - \frac{1}{2}W_{\varepsilon}(\nu,\nu)^{p}$ $\bar{W}_{\varepsilon}(\boldsymbol{\mu},\boldsymbol{\nu})^{p} \xrightarrow[\varepsilon \to +\infty]{\varepsilon \to +\infty} W(\boldsymbol{\mu},\boldsymbol{\nu})^{p}$ Theorem: [Ramdas, G.Trillos, Cuturi 17] for $k(x, y) = -\|x - y\|^p$

Best of both worlds:

 \rightarrow cross-validate ε

- Scale free (no σ , no heavy tail kernel).
- Non-Euclidean, arbitrary ground distance.
- Less biased gradient.
- No curse of dimension (low sample complexity).

Deep Discriminative vs Generative Models

Deep Discriminative vs Generative Models

Examples of Image Generation

[Credit ArXiv:1511.06434]

Conclusion: Toward High-dimensional OT

