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also reveal that the network simplex behaves in O(n2
) in our con-

text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
2000; Kanters et al. 2003; Morovic and Sun 2003].
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2

) algorithm in practice
whereas the transport simplex runs in O(n3

).

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140⇥140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for ↵ = 1/4, ↵ = 1/2, and ↵ = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
study are also of broader interest, as current EMD image retrieval
or color transfer techniques rely on slower solvers [Rubner et al.
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5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140⇥140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
more meaningful results [Rusinkiewicz 1998]. In practice, we ap-
ply log(1 + x) to remap the values so that the function remains

Figure 7: Synthetic 2D examples on a Euclidean domain. The
left and right columns show the input distributions, while the center
columns show interpolations for ↵ = 1/4, ↵ = 1/2, and ↵ = 3/4.

positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but that
the particle pairing that produces the actual interpolation scheme
remains unchanged. We used the fixed point method to generate
the results presented in this paper. The results of the performance
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tions, isotropic distributions, distributions that require a split, and
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set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.
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BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values
give more importance to low intensities, which yields perceptually
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ply log(1 + x) to remap the values so that the function remains
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positive. A negative side effect of this choice is that interpolating
between BRDFs of equal energy conserves their log energy (§ 3.6)
instead of their energy. Because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
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by slice. Reciprocity is not guaranteed in this process, but could
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to using spherical linear interpolation on the paired particles. We
render the results with PBRT [Pharr and Humphreys 2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
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cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. Adaptively
adjusting the variance of each Gaussian according to the local fre-
quency content could improve the quality in this specific case.
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Gromov-Wasserstein Averaging of Kernel and Distance Matrices

1.2. Contributions

Our first contribution is the definition of a new discrep-
ancy between similarity matrices. It extends the “Gromov-
Wasserstein” distance between metric-measure spaces to
arbitrary matrices, using a generic loss functions to com-
pare pairwise similarities and entropic regularization. It
can be defined over different ground measured spaces (i.e.
each point is equipped with a measure), which are not re-
quired to be registered a priori. Entropic regularization en-
ables the design of a fast iterative algorithm to compute a
stationary point of the non-convex energy defining the dis-
crepancy.

Our second contribution is a new notion of the barycen-
ter of a set of unregistered similarity matrices, defined as
a Fréchet mean with respect to the GW discrepancy. We
propose a block coordinate relaxation algorithm to com-
pute a stationary point of the objective function defining
our barycenter.

We showcase applications of our method to the computa-
tion of barycenters between shapes. We also exemplify
how the GW discrepancy can be used to predict energy
levels in quantum chemistry, where molecules are natu-
rally represented using their Coulomb interaction matrices,
a perfect fit for our unregistered dissimilarity matrix for-
malism.

The code to reproduce the results of this paper is available
online.1

1.3. Notation

The simplex of histograms with N bins is ⌃N
def.
=�

p 2 R+

N ;

P
i pi = 1

 
. The entropy of T 2 RN⇥N

+

is
defined as H(T )

def.
= �

PN
i,j=1

Ti,j(log(Ti,j)� 1). The set
of couplings between histograms p 2 ⌃N1 and q 2 ⌃N2 is

Cp,q
def.
=

�
T 2 (R

+

)

N1⇥N2
; T1N2 = p, T>1N1 = q

 
.

Here, 1N
def.
= (1, . . . , 1)> 2 RN . For any tensor L =

(Li,j,k,`)i,j,k,` and matrix (Ti,j)i,j , we define the tensor-
matrix multiplication as

L⌦ T
def.
=

⇣X

k,`

Li,j,k,`Tk,`

⌘

i,j
. (1)

2. Gromov-Wasserstein Discrepancy
2.1. Entropic Optimal Transport

Optimal transport distances are useful to compare two his-
tograms (p, q) 2 ⌃N1 ⇥ ⌃N2 defined on the same metric

1
https://github.com/gpeyre/

2016-ICML-gromov-wasserstein

space, or at least on spaces that have previously registered.
Given some cost matrix c 2 RN1⇥N2

+

, where ci,j represents
the transportation cost between position indexed by i and j,
we define the solution of entropically-regularized optimal
transport between these two histograms as

T (c, p, q)
def.
= argmin

T2Cp,q

hc, T i � "H(T ), (2)

which is a strictly convex optimization problem.

As shown in (Cuturi, 2013), the solution reads T (c, p, q) =

diag(a)K diag(b) where K
def.
= e�

c
" 2 RN1⇥N2

+

is the so-
called Gibbs kernel associated to c, and (a, b) 2 RN1

+

⇥RN2
+

can be computed using Sinkhorn iterations

a p

Kb
and b q

K>a
, (3)

where here ·
· denotes component-wise division.

2.2. Gromov-Wasserstein Discrepancy

Following the pioneering work of Mémoli, we consider
input data expressed as metric-measure spaces (Mémoli,
2011). This corresponds to pairs of the form (C, p) 2
RN⇥N ⇥⌃N , where N is an arbitrary integer (the number
of elements in the underlying space). Here, C is a matrix
representing either similarities or distances between these
elements, and p is an histogram, which can account either
for some uncertainty or relative importance between these
elements. In case no prior information is known about a
space, one can set p =

1

N 1N to the uniform distribution.
In our setting, since we target a wide range of machine-
learning problems, we do not restrict the matrices C to be
distance matrices, i.e., they are not necessarily positive and
does not necessarily satisfy the triangle inequality.

We define the Gromov-Wasserstein discrepancy between
two measured similarity matrices (C, p) 2 RN1⇥N1 ⇥⌃N1

and (

¯C, q) 2 RN2⇥N2 ⇥ ⌃N2 as follows:

GW(C, ¯C, p, q)
def.
= min

T2Cp,q

EC, ¯C(T ) (4)

where EC, ¯C(T )
def.
=

X

i,j,k,`

L(Ci,k, ¯Cj,`)Ti,jTk,`

The matrix T is a coupling between the two spaces on
which the similarity matrices C and ¯C are defined. Here
L is some loss function to account for the misfit between
the similarity matrices. Typical choices of loss include
the quadratic loss L(a, b) = L

2

(a, b)
def.
=

1

2

|a � b|2 and
the Kullback-Leibler divergence L(a, b) = KL(a|b) def.

=

a log(a/b) � a + b (which is not symmetric). This def-
inition (4) of GW extends slightly the one considered
by (Mémoli, 2011), since we consider an arbitrary loss
L (rather than just the L2 squared loss). In the case

Entropy:

Entropic Regularization
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Gromov-Wasserstein Averaging of Kernel and Distance Matrices

1.2. Contributions

Our first contribution is the definition of a new discrep-
ancy between similarity matrices. It extends the “Gromov-
Wasserstein” distance between metric-measure spaces to
arbitrary matrices, using a generic loss functions to com-
pare pairwise similarities and entropic regularization. It
can be defined over different ground measured spaces (i.e.
each point is equipped with a measure), which are not re-
quired to be registered a priori. Entropic regularization en-
ables the design of a fast iterative algorithm to compute a
stationary point of the non-convex energy defining the dis-
crepancy.

Our second contribution is a new notion of the barycen-
ter of a set of unregistered similarity matrices, defined as
a Fréchet mean with respect to the GW discrepancy. We
propose a block coordinate relaxation algorithm to com-
pute a stationary point of the objective function defining
our barycenter.

We showcase applications of our method to the computa-
tion of barycenters between shapes. We also exemplify
how the GW discrepancy can be used to predict energy
levels in quantum chemistry, where molecules are natu-
rally represented using their Coulomb interaction matrices,
a perfect fit for our unregistered dissimilarity matrix for-
malism.

The code to reproduce the results of this paper is available
online.1

1.3. Notation

The simplex of histograms with N bins is ⌃N
def.
=�

p 2 R+

N ;

P
i pi = 1

 
. The entropy of T 2 RN⇥N

+

is
defined as H(T )

def.
= �

PN
i,j=1

Ti,j(log(Ti,j)� 1). The set
of couplings between histograms p 2 ⌃N1 and q 2 ⌃N2 is

Cp,q
def.
=

�
T 2 (R

+

)

N1⇥N2
; T1N2 = p, T>1N1 = q

 
.

Here, 1N
def.
= (1, . . . , 1)> 2 RN . For any tensor L =

(Li,j,k,`)i,j,k,` and matrix (Ti,j)i,j , we define the tensor-
matrix multiplication as

L⌦ T
def.
=

⇣X

k,`

Li,j,k,`Tk,`

⌘

i,j
. (1)

2. Gromov-Wasserstein Discrepancy
2.1. Entropic Optimal Transport

Optimal transport distances are useful to compare two his-
tograms (p, q) 2 ⌃N1 ⇥ ⌃N2 defined on the same metric

1
https://github.com/gpeyre/

2016-ICML-gromov-wasserstein

space, or at least on spaces that have previously registered.
Given some cost matrix c 2 RN1⇥N2

+

, where ci,j represents
the transportation cost between position indexed by i and j,
we define the solution of entropically-regularized optimal
transport between these two histograms as

T (c, p, q)
def.
= argmin

T2Cp,q

hc, T i � "H(T ), (2)

which is a strictly convex optimization problem.

As shown in (Cuturi, 2013), the solution reads T (c, p, q) =

diag(a)K diag(b) where K
def.
= e�

c
" 2 RN1⇥N2

+

is the so-
called Gibbs kernel associated to c, and (a, b) 2 RN1

+

⇥RN2
+

can be computed using Sinkhorn iterations

a p

Kb
and b q

K>a
, (3)

where here ·
· denotes component-wise division.

2.2. Gromov-Wasserstein Discrepancy

Following the pioneering work of Mémoli, we consider
input data expressed as metric-measure spaces (Mémoli,
2011). This corresponds to pairs of the form (C, p) 2
RN⇥N ⇥⌃N , where N is an arbitrary integer (the number
of elements in the underlying space). Here, C is a matrix
representing either similarities or distances between these
elements, and p is an histogram, which can account either
for some uncertainty or relative importance between these
elements. In case no prior information is known about a
space, one can set p =

1

N 1N to the uniform distribution.
In our setting, since we target a wide range of machine-
learning problems, we do not restrict the matrices C to be
distance matrices, i.e., they are not necessarily positive and
does not necessarily satisfy the triangle inequality.

We define the Gromov-Wasserstein discrepancy between
two measured similarity matrices (C, p) 2 RN1⇥N1 ⇥⌃N1

and (

¯C, q) 2 RN2⇥N2 ⇥ ⌃N2 as follows:

GW(C, ¯C, p, q)
def.
= min

T2Cp,q

EC, ¯C(T ) (4)

where EC, ¯C(T )
def.
=

X

i,j,k,`

L(Ci,k, ¯Cj,`)Ti,jTk,`

The matrix T is a coupling between the two spaces on
which the similarity matrices C and ¯C are defined. Here
L is some loss function to account for the misfit between
the similarity matrices. Typical choices of loss include
the quadratic loss L(a, b) = L

2

(a, b)
def.
=

1

2

|a � b|2 and
the Kullback-Leibler divergence L(a, b) = KL(a|b) def.

=

a log(a/b) � a + b (which is not symmetric). This def-
inition (4) of GW extends slightly the one considered
by (Mémoli, 2011), since we consider an arbitrary loss
L (rather than just the L2 squared loss). In the case

Entropy:

Entropic Regularization

Regularization impact on solution:

Def. Regularized OT: [Cuturi NIPS’13]
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Density Fitting and Generative Models

Parametric model: ✓ 7! µ✓

µ✓

✓
Observations: ⌫ = 1

n
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n

i=1 �xi

dµ✓(y) = f✓(y)dyDensity fitting:

Maximum

likelihood (MLE)

min

✓
c
KL(µ✓|⌫)

def.
= �

X

j

log(f✓(yj))

g✓ µ✓

XZ

⇣

Generative model fit:

µ✓ = g✓,]⇣

! MLE undefined.

! Need a weaker metric.

cKL(µ✓|⌫) = +1
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– Less biased gradient.
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Examples of Image Generation
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Conclusion: Toward High-dimensional OT
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Optimal transport framework Sliced Wasserstein projection Applications

Application to Color Transfer

Source image (X )

Style image (Y )

Sliced Wasserstein projection of X to style
image color statistics Y

Source image after color transfer
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