
Optimization by gradient boosting

Gérard Biau

Nantes, March 2018

Coauthors

Benoît Cadre (ENS Rennes) Laurent Rouvière (University Rennes 2)

1

Outline

1. Boosting and gradient boosting

2. Mathematical context

3. Two algorithms

4. Convergence

5. Large sample properties

6. Boosting gradient boosting

2

Boosting and gradient boosting

Boosting at a glance

• Boosting: algorithms that convert weak learners to strong ones.

• Idea: combine simple predictors to produce a weighted committee.

• One of the most powerful learning ideas introduced in modern times.

• Considerable impact in statistics and machine learning.

3

Boosting at a glance

• Boosting: algorithms that convert weak learners to strong ones.

• Idea: combine simple predictors to produce a weighted committee.

• One of the most powerful learning ideas introduced in modern times.

• Considerable impact in statistics and machine learning.

3

Boosting at a glance

• Boosting: algorithms that convert weak learners to strong ones.

• Idea: combine simple predictors to produce a weighted committee.

• One of the most powerful learning ideas introduced in modern times.

• Considerable impact in statistics and machine learning.

3

Boosting at a glance

• Boosting: algorithms that convert weak learners to strong ones.

• Idea: combine simple predictors to produce a weighted committee.

• One of the most powerful learning ideas introduced in modern times.

• Considerable impact in statistics and machine learning.

3

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:

. At each iteration, select a base classifier and assign a weight to it;

. Misclassified observations have their weights increased;

. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;

. Misclassified observations have their weights increased;

. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;

. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.

4

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.

• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).

• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.

• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.

• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang
and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.

• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.

• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.

• The objective is regularized to avoid overfitting.

6

A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.

6

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;
. Prove convergence as the number of iterations tends to infinity;
. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;
. Prove convergence as the number of iterations tends to infinity;
. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:

. Clarify the mathematical principles of the algorithms;

. Adopt the point of view of functional optimization in L2;

. Prove convergence as the number of iterations tends to infinity;

. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;

. Adopt the point of view of functional optimization in L2;

. Prove convergence as the number of iterations tends to infinity;

. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;

. Prove convergence as the number of iterations tends to infinity;

. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;
. Prove convergence as the number of iterations tends to infinity;

. Introduce a reasonable statistical framework for consistency properties.

7

Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;
. Prove convergence as the number of iterations tends to infinity;
. Introduce a reasonable statistical framework for consistency properties.

7

Mathematical context

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.

• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F) =
1
n

n∑
i=1

(Yi − F (Xi))2.

8

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.

• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.

• Each f ∈ F takes the form f =
∑k

j=1 βj1Aj .

9

A more general problem

• Clearly,
Cn(F) = Eψ(F (X),Y),

where (X ,Y) is a random pair with distribution µn.
• The population version of Cn is

C (F) = Eψ(F (X1),Y1).

• General context: (X ,Y) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F) = Eψ(F (X),Y) over lin(F), where F ⊂ L2(µX).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9

Some assumptions

Subgradient
ξ(·, y) is a subgradient of the convex function ψ(·, y). Recall that

1. ξ(x , y) ∈ [∂−x ψ(x , y); ∂+
x ψ(x , y)].

2. ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

Assumption A1

One has Eψ(0,Y) <∞. In addition, for all F ∈ L2(µX), there exists
δ > 0 such that

sup
G∈L2(µX):‖G−F‖µX≤δ

(
E|∂−x ψ(G (X),Y)|2 + E|∂+

x ψ(G (X),Y)|2
)
<∞.

Interpretation

C (F) <∞ for all F ∈ L2(µX) and C is continuous.

10

Some assumptions

Subgradient
ξ(·, y) is a subgradient of the convex function ψ(·, y). Recall that

1. ξ(x , y) ∈ [∂−x ψ(x , y); ∂+
x ψ(x , y)].

2. ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

Assumption A1

One has Eψ(0,Y) <∞. In addition, for all F ∈ L2(µX), there exists
δ > 0 such that

sup
G∈L2(µX):‖G−F‖µX≤δ

(
E|∂−x ψ(G (X),Y)|2 + E|∂+

x ψ(G (X),Y)|2
)
<∞.

Interpretation

C (F) <∞ for all F ∈ L2(µX) and C is continuous.

10

Some assumptions

Subgradient
ξ(·, y) is a subgradient of the convex function ψ(·, y). Recall that

1. ξ(x , y) ∈ [∂−x ψ(x , y); ∂+
x ψ(x , y)].

2. ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

Assumption A1

One has Eψ(0,Y) <∞. In addition, for all F ∈ L2(µX), there exists
δ > 0 such that

sup
G∈L2(µX):‖G−F‖µX≤δ

(
E|∂−x ψ(G (X),Y)|2 + E|∂+

x ψ(G (X),Y)|2
)
<∞.

Interpretation

C (F) <∞ for all F ∈ L2(µX) and C is continuous.

10

Some assumptions

Assumption A2

There exists α > 0 such that, for all y ∈ Y , the function ψ(·, y) is
α-strongly convex, i.e., for all (x1, x2) ∈ R2 and t ∈ [0, 1],

ψ(tx1 + (1− t)x2, y) ≤ tψ(x1, y) + (1− t)ψ(x2, y)− α

2
t(1− t)(x1− x2)2.

Interpretation
One has

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2) +
α

2
(x1 − x2)2

instead of
ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

11

Some assumptions

Assumption A2

There exists α > 0 such that, for all y ∈ Y , the function ψ(·, y) is
α-strongly convex, i.e., for all (x1, x2) ∈ R2 and t ∈ [0, 1],

ψ(tx1 + (1− t)x2, y) ≤ tψ(x1, y) + (1− t)ψ(x2, y)− α

2
t(1− t)(x1− x2)2.

Interpretation
One has

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2) +
α

2
(x1 − x2)2

instead of
ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

11

Some assumptions

Assumption A3

There exists a positive constant L such that, for all (x1, x2) ∈ R2,

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ L|x1 − x2|.

A more digest Assumption A′3
For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and
there exists a positive constant L such that

|∂xψ(x1, y)− ∂xψ(x2, y)| ≤ L|x1 − x2|.

Interpretation

The functional C is differentiable at any F ∈ L2(µX) with

dC (F ;G) = 〈∇C (F),G 〉µX
,

where ∇C (F)(x) :=
∫
∂xψ(F (x), y)µY |X=x(dy).

12

Some assumptions

Assumption A3

There exists a positive constant L such that, for all (x1, x2) ∈ R2,

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ L|x1 − x2|.

A more digest Assumption A′3
For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and
there exists a positive constant L such that

|∂xψ(x1, y)− ∂xψ(x2, y)| ≤ L|x1 − x2|.

Interpretation

The functional C is differentiable at any F ∈ L2(µX) with

dC (F ;G) = 〈∇C (F),G 〉µX
,

where ∇C (F)(x) :=
∫
∂xψ(F (x), y)µY |X=x(dy).

12

Some assumptions

Assumption A3

There exists a positive constant L such that, for all (x1, x2) ∈ R2,

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ L|x1 − x2|.

A more digest Assumption A′3
For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and
there exists a positive constant L such that

|∂xψ(x1, y)− ∂xψ(x2, y)| ≤ L|x1 − x2|.

Interpretation

The functional C is differentiable at any F ∈ L2(µX) with

dC (F ;G) = 〈∇C (F),G 〉µX
,

where ∇C (F)(x) :=
∫
∂xψ(F (x), y)µY |X=x(dy).

12

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.

. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.

. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.
. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y)− ξ(x2,Y) |X)| ≤ 2(B + γ)|x1 − x2|.

13

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.

. 2(γ − β2)-strongly convex as soon as β <
√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4

14

Take-home message

1. Our assumptions include a large variety of learning problems.

2. Regularization is important.

3. Regularized objectives are in action in the XGBoost system.

15

Take-home message

1. Our assumptions include a large variety of learning problems.

2. Regularization is important.

3. Regularized objectives are in action in the XGBoost system.

15

Take-home message

1. Our assumptions include a large variety of learning problems.

2. Regularization is important.

3. Regularized objectives are in action in the XGBoost system.

15

Two algorithms

The idea of gradient boosting

• Finding the infimum of the functional C over lin(F) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX).

• Fact 1: Under Assumption A1,

inf
F∈lin(F)

C (F) = inf
F∈lin(F)

C (F).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F) (the
boosting predictor) such that

C (F̄) = inf
F∈lin(F)

C (F).

16

The idea of gradient boosting

• Finding the infimum of the functional C over lin(F) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX).

• Fact 1: Under Assumption A1,

inf
F∈lin(F)

C (F) = inf
F∈lin(F)

C (F).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F) (the
boosting predictor) such that

C (F̄) = inf
F∈lin(F)

C (F).

16

The idea of gradient boosting

• Finding the infimum of the functional C over lin(F) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX).

• Fact 1: Under Assumption A1,

inf
F∈lin(F)

C (F) = inf
F∈lin(F)

C (F).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F) (the
boosting predictor) such that

C (F̄) = inf
F∈lin(F)

C (F).

16

The idea of gradient boosting

• Finding the infimum of the functional C over lin(F) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX).

• Fact 1: Under Assumption A1,

inf
F∈lin(F)

C (F) = inf
F∈lin(F)

C (F).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F) (the
boosting predictor) such that

C (F̄) = inf
F∈lin(F)

C (F).

16

The idea of gradient boosting

• Finding the infimum of the functional C over lin(F) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX).

• Fact 1: Under Assumption A1,

inf
F∈lin(F)

C (F) = inf
F∈lin(F)

C (F).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F) (the
boosting predictor) such that

C (F̄) = inf
F∈lin(F)

C (F).

16

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F).

? Which f ∈ F to add to F so that C (F + wf) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F)− C (F + wf) ≈ −w〈∇C (F), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X),Y)f (X).

17

Gradient boosting Algorithm 1

1: Require (wt)t a sequence of positive real numbers.
2: Set t = 0 and start with F0 ∈ F .
3: Compute

ft+1 ∈ argmaxf∈F − Eξ(Ft(X),Y)f (X)

and let Ft+1 = Ft + wt+1ft+1.
4: Take t ← t + 1 and go to step 3.

18

Some comments

• The algorithm performs a gradient-type descent in L2(µX).

• Difference: the descent direction belongs to F .

• If ψ is continuously differentiable in its first argument, then

−Eξ(Ft(X),Y)f (X) = −〈∇C (Ft), f 〉µX
,

and, for ∇C (Ft) 6= 0,

−∇C (Ft)

‖∇C (Ft)‖µX

= argmaxF∈L2(µX):‖F‖µX =1 − 〈∇C (Ft),F 〉µX
.

• Rationale: at each step, Algorithm 1 mimics the computation of the
negative gradient:

ft+1 ∈ argmaxf∈F − 〈∇C (Ft), f 〉µX
.

19

Some comments

• The algorithm performs a gradient-type descent in L2(µX).

• Difference: the descent direction belongs to F .

• If ψ is continuously differentiable in its first argument, then

−Eξ(Ft(X),Y)f (X) = −〈∇C (Ft), f 〉µX
,

and, for ∇C (Ft) 6= 0,

−∇C (Ft)

‖∇C (Ft)‖µX

= argmaxF∈L2(µX):‖F‖µX =1 − 〈∇C (Ft),F 〉µX
.

• Rationale: at each step, Algorithm 1 mimics the computation of the
negative gradient:

ft+1 ∈ argmaxf∈F − 〈∇C (Ft), f 〉µX
.

19

Some comments

• The algorithm performs a gradient-type descent in L2(µX).

• Difference: the descent direction belongs to F .

• If ψ is continuously differentiable in its first argument, then

−Eξ(Ft(X),Y)f (X) = −〈∇C (Ft), f 〉µX
,

and, for ∇C (Ft) 6= 0,

−∇C (Ft)

‖∇C (Ft)‖µX

= argmaxF∈L2(µX):‖F‖µX =1 − 〈∇C (Ft),F 〉µX
.

• Rationale: at each step, Algorithm 1 mimics the computation of the
negative gradient:

ft+1 ∈ argmaxf∈F − 〈∇C (Ft), f 〉µX
.

19

Some comments

• The algorithm performs a gradient-type descent in L2(µX).

• Difference: the descent direction belongs to F .

• If ψ is continuously differentiable in its first argument, then

−Eξ(Ft(X),Y)f (X) = −〈∇C (Ft), f 〉µX
,

and, for ∇C (Ft) 6= 0,

−∇C (Ft)

‖∇C (Ft)‖µX

= argmaxF∈L2(µX):‖F‖µX =1 − 〈∇C (Ft),F 〉µX
.

• Rationale: at each step, Algorithm 1 mimics the computation of the
negative gradient:

ft+1 ∈ argmaxf∈F − 〈∇C (Ft), f 〉µX
.

19

Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi) · f (Xi).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F) ?

20

Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi) · f (Xi).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F) ?

20

Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi) · f (Xi).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F) ?

20

Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi) · f (Xi).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F) ?

20

Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi) · f (Xi).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F) ?

20

Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X),Y)f (X)

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X),Y)−f (X))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
.

21

Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X),Y)f (X)

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X),Y)−f (X))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
.

21

Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X),Y)f (X)

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X),Y)−f (X))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
.

21

Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X),Y)f (X)

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X),Y)−f (X))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
.

21

Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X),Y)f (X)

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X),Y)−f (X))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
.

21

Gradient boosting Algorithm 2

1: Require ν a positive real number.
2: Set t = 0 and start with F0 ∈P.
3: Compute

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X),Y)f (X) + ‖f ‖2µX

)
and let Ft+1 = Ft + νft+1.

4: Take t ← t + 1 and go to step 3.

22

Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi)− f (Xi))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi) = Yi − Ft(Xi).

• This is at the origin of gradient boosting.

23

Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi)− f (Xi))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi) = Yi − Ft(Xi).

• This is at the origin of gradient boosting.

23

Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi)− f (Xi))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi) = Yi − Ft(Xi).

• This is at the origin of gradient boosting.

23

Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi)− f (Xi))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi) = Yi − Ft(Xi).

• This is at the origin of gradient boosting.

23

Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi)− f (Xi))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi) = Yi − Ft(Xi).

• This is at the origin of gradient boosting.

23

Convergence

Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y)ft+1(X)

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F) such that

C (F̄) = inf
F∈lin(F)

C (F).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

24

Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y)ft+1(X)

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F) such that

C (F̄) = inf
F∈lin(F)

C (F).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

24

Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y)ft+1(X)

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F) such that

C (F̄) = inf
F∈lin(F)

C (F).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

24

Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y)ft+1(X)

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F) such that

C (F̄) = inf
F∈lin(F)

C (F).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

24

Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X),Y)ft+1(X)

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F)

C (F).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F) such that

C (F̄) = inf
F∈lin(F)

C (F).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

24

Mathematical machinery

Lemma
Assume that Assumptions A1 and A3 are satisfied. Then

C (Ft)− C (Ft+1) ≥ Lw2
t+1.

In particular, limt→∞ C (Ft) = infk C (Fk).

Corollary

Assume that lin(F) = L2(µX). Assume, in addition, that Assumptions
A1, A2, and A′3 are satisfied. Then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

25

Mathematical machinery

Lemma
Assume that Assumptions A1 and A3 are satisfied. Then

C (Ft)− C (Ft+1) ≥ Lw2
t+1.

In particular, limt→∞ C (Ft) = infk C (Fk).

Corollary

Assume that lin(F) = L2(µX). Assume, in addition, that Assumptions
A1, A2, and A′3 are satisfied. Then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

25

Algorithm 2

Theorem
Assume that Assumptions A1-A3 are satisfied, with 0 < ν < 1/(2L).
Then

lim
t→∞

C (Ft) = inf
F∈lin(P)

C (F).

. The result requires Assumption A2.

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

. If lin(P) = L2(µX) and A′3 is satisfied, then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

26

Algorithm 2

Theorem
Assume that Assumptions A1-A3 are satisfied, with 0 < ν < 1/(2L).
Then

lim
t→∞

C (Ft) = inf
F∈lin(P)

C (F).

. The result requires Assumption A2.

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

. If lin(P) = L2(µX) and A′3 is satisfied, then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

26

Algorithm 2

Theorem
Assume that Assumptions A1-A3 are satisfied, with 0 < ν < 1/(2L).
Then

lim
t→∞

C (Ft) = inf
F∈lin(P)

C (F).

. The result requires Assumption A2.

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

. If lin(P) = L2(µX) and A′3 is satisfied, then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

26

Algorithm 2

Theorem
Assume that Assumptions A1-A3 are satisfied, with 0 < ν < 1/(2L).
Then

lim
t→∞

C (Ft) = inf
F∈lin(P)

C (F).

. The result requires Assumption A2.

. The theorem guarantees that limt→∞ C (Ft) = C (F̄).

. If lin(P) = L2(µX) and A′3 is satisfied, then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX)C (F).

26

Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi)

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?

27

Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi)

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?

27

Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi)

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?

27

Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi)

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?

27

Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi)

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?

27

Discussion

• Catastrophic situations can happen → “size” of lin(F) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.

28

Discussion

• Catastrophic situations can happen → “size” of lin(F) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.

28

Discussion

• Catastrophic situations can happen → “size” of lin(F) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.

28

Discussion

• Catastrophic situations can happen → “size” of lin(F) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.

28

Discussion

• Catastrophic situations can happen → “size” of lin(F) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.

28

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.

29

Large sample properties

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.

• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.
• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j) ≥ vn.

30

Objective

• Objective: minimize over lin(Fn) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi),

where ψ(x , y) = φ(x , y) + γnx
2.

• Differently:
Cn(F) = An(F) + γn‖F‖2Pn

,

where

An(F) =
1
n

n∑
i=1

φ(F (Xi),Yi).

• The strong convexity Assumption A2 is satisfied.

31

Objective

• Objective: minimize over lin(Fn) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi),

where ψ(x , y) = φ(x , y) + γnx
2.

• Differently:
Cn(F) = An(F) + γn‖F‖2Pn

,

where

An(F) =
1
n

n∑
i=1

φ(F (Xi),Yi).

• The strong convexity Assumption A2 is satisfied.

31

Objective

• Objective: minimize over lin(Fn) the empirical risk functional

Cn(F) =
1
n

n∑
i=1

ψ(F (Xi),Yi),

where ψ(x , y) = φ(x , y) + γnx
2.

• Differently:
Cn(F) = An(F) + γn‖F‖2Pn

,

where

An(F) =
1
n

n∑
i=1

φ(F (Xi),Yi).

• The strong convexity Assumption A2 is satisfied.

31

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log(η(x)
1−η(x)) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F) + γn‖F‖2Pn

−A(F ?)
)
.

32

Main result

Assumption A4

For all p ≥ 0, there exists a constant ζ(p) > 0 such that, for all
(x1, x2, y) ∈ R2 × Y with max(|x1|, |x2|) ≤ p,

|φ(x1, y)− φ(x2, y)| ≤ ζ(p)|x1 − x2|.

Theorem
Assume that Assumptions A3 and A4 are satisfied, and that F ? is
bounded. Assume, in addition, that diam(An(X))→ 0 in probability as
n→∞. Then, provided γn → 0, N →∞, logN

nvn
→ 0, and

1
√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞EA(F̄n) = A(F ?).

33

Main result

Assumption A4

For all p ≥ 0, there exists a constant ζ(p) > 0 such that, for all
(x1, x2, y) ∈ R2 × Y with max(|x1|, |x2|) ≤ p,

|φ(x1, y)− φ(x2, y)| ≤ ζ(p)|x1 − x2|.

Theorem
Assume that Assumptions A3 and A4 are satisfied, and that F ? is
bounded. Assume, in addition, that diam(An(X))→ 0 in probability as
n→∞. Then, provided γn → 0, N →∞, logN

nvn
→ 0, and

1
√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞EA(F̄n) = A(F ?).

33

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;
. Cuts are orthogonal and located at the middle of the cells;
. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;
. Cuts are orthogonal and located at the middle of the cells;
. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:

. X = [0, 1]d ;

. Fn = all trees on [0, 1]d with kn leaves;

. Cuts are orthogonal and located at the middle of the cells;

. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;

. Fn = all trees on [0, 1]d with kn leaves;

. Cuts are orthogonal and located at the middle of the cells;

. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;

. Cuts are orthogonal and located at the middle of the cells;

. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;
. Cuts are orthogonal and located at the middle of the cells;

. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;
. Cuts are orthogonal and located at the middle of the cells;
. Although combinatorially rich, this family of trees is finite.

−1

1

1

0

+1

+1

−1

−1

1

1

0

+1

+1

+1

−1

1

1

0

+1

+1

−1

−1

1

1

0

−1+1+1

34

Example

• Any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• N ≤ 2dkn and the An
j form a regular grid over [0, 1]d .

• Also, vn ≥ 2−dkn .

• With φ(x , y) = (y − x)2, the conditions of the theorem read

kn →∞,
kn2dkn

n
→ 0, and

2dkn√
n
→ 0.

35

Example

• Any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• N ≤ 2dkn and the An
j form a regular grid over [0, 1]d .

• Also, vn ≥ 2−dkn .

• With φ(x , y) = (y − x)2, the conditions of the theorem read

kn →∞,
kn2dkn

n
→ 0, and

2dkn√
n
→ 0.

35

Example

• Any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• N ≤ 2dkn and the An
j form a regular grid over [0, 1]d .

• Also, vn ≥ 2−dkn .

• With φ(x , y) = (y − x)2, the conditions of the theorem read

kn →∞,
kn2dkn

n
→ 0, and

2dkn√
n
→ 0.

35

±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF) = P(gF (X) 6= Y) and the Bayes risk L?.

• Most often: L(gF)− L? is small as long as A(F)− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.

36

±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF) = P(gF (X) 6= Y) and the Bayes risk L?.

• Most often: L(gF)− L? is small as long as A(F)− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.

36

±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF) = P(gF (X) 6= Y) and the Bayes risk L?.

• Most often: L(gF)− L? is small as long as A(F)− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.

36

±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF) = P(gF (X) 6= Y) and the Bayes risk L?.

• Most often: L(gF)− L? is small as long as A(F)− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.

36

±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF) = P(gF (X) 6= Y) and the Bayes risk L?.

• Most often: L(gF)− L? is small as long as A(F)− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.

36

Boosting gradient boosting

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.

37

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
38

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
39

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT . 40

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
41

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
42

AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi) + w ,Yi).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
43

AGB

GB

0 1000 2000 3000 4000 5000

0.10

0.15

0.20

0.25

0.10

0.15

0.20

0.25

iterations

A
da

bo
os

t e
xp

on
en

tia
l l

os
s

shrinkage

0.001

0.01

0.05

0.1

44

Model 1: AGB

Model 1: GB

0 500 1000 1500 2000

0 500 1000 1500 2000

0.7

0.8

0.9

1.0

0.0

0.5

1.0

1.5

2.0

iterations

m
se

Model 5: AGB

Model 5: GB

0 1000 2000 3000

0 1000 2000 3000

0.4

0.6

0.8

0.0

0.5

1.0

1.5

iterations

A
da

. l
os

s

45

●

● ● ●

●

●● ●

●

●

●

●
●●

● ●●●
● ●

●●
● ● ●●

●

●●● ● ●● ● ●●●● ●

●

●

● ●
●

●

●

●

● ● ●

●

●
●

●

●

●● ●
●●● ●

●

●●●
●●

●
●

●

●●●
●

●

● ●
●

●●●

● ●●●●●● ●● ●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●

●●●
●
●●

●●●●●●

●●●●●

●●●● ●● ●● ●●●●

●●

●

●

●●●●●● ●●●●●
●
●

●●●●

●

●●

●●●●●●●

●●●●●●●●●

●●●

●●

●●
●

●

●●●●●●●●●●●●●●●●●●

●

●●

● ●●● ● ●●●●

Model 5, error Model 5, iterations

Model 4, error Model 4, iterations

Model 3, error Model 3, iterations

Model 2, error Model 2, iterations

Model 1, error Model 1, iterations

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5
0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0.7
0.8
0.9
1.0
1.1
1.2

0.5

1.0

1.5

2.0

2.5

0

1

2

3

0.2

0.4

0.6

0.8

1.0

0.5
0.6
0.7
0.8
0.9

shrinkage

46

●
●●

●
●●

●
●

●
●
●●

● ●●
●

●

● ●
●

●

● ●

●

●

●
●

●

● ●●● ●●

●

● ●●

●

●

● ●

●

● ● ●

●●● ●

●
●
●

●

●

●●●

●
●●

●

● ●● ●

●

●●●

●

●●●●●

●

●
●
●●

●●

●

●

●●
●●

● ●

●●●

●●

●●

●●

●

●
●●●

●●●●

●
●
●

●

●●
●●

● ●●●

Wine, error Wine, iterations

Spam, error Spam, iterations

Crime, error Crime, iterations

Advert, error Advert, iterations

Adult, error Adult, iterations

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5

1e−05 0.001 0.01 0.1 0.5 1e−05 0.001 0.01 0.1 0.5
0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0

2500

5000

7500

10000

0.5

0.6

0.7

0.8

0

10

20

30

0.02

0.03

0.04

0.05

0.4

0.6

0.8

0.4

0.5

0.6

0.7

shrinkage

47

Take-home message

• AGB retains the excellent performance of gradient boosting.

• It is less sensitive to the shrinkage parameter.

• It outputs sparse predictors.

• A decisive advantage in large-scale learning.

• More at github.com/lrouviere/AGB.

48

	Boosting and gradient boosting
	Mathematical context
	Two algorithms
	Convergence
	Large sample properties
	Boosting gradient boosting

