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Boosting and gradient boosting



Boosting at a glance

• Boosting: algorithms that convert weak learners to strong ones.

• Idea: combine simple predictors to produce a weighted committee.

• One of the most powerful learning ideas introduced in modern times.

• Considerable impact in statistics and machine learning.
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A brief history of boosting

1990-1997: Freund and Schapire’s Adaboost.

• Adaboost is an iterative classification algorithm.

• For a fixed number of iterations, do:
. At each iteration, select a base classifier and assign a weight to it;
. Misclassified observations have their weights increased;
. Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman’s papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

• Boosting is at the frontier of numerical optimization and statistics.
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A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2001-2002: Friedman’s gradient boosting.

• A general statistical framework for boosting.

• Interpretation as optimization in a function space.

• Arbitrary loss functions, for classification and regression.

• Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

• The increments point in the negative gradient direction.

• First attempt to understand the mathematical forces of boosting.

5



A brief history of boosting

2003-2007: Boosting from a statistical perspective.

• Empirical risk minimization with a convex loss.
• Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
• Idealized models: statistical properties but no optimization.
• Regularization via early stopping.
• Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang

and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.
• Inspired by Friedman’s principles.
• Outstanding results in numerous data challenges.
• The objective is regularized to avoid overfitting.
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Agenda

• There is to date no sound theory of gradient boosting.

• Optimization is the natural environment for gradient-type methods.

• Our objective today:
. Clarify the mathematical principles of the algorithms;
. Adopt the point of view of functional optimization in L2;
. Prove convergence as the number of iterations tends to infinity;
. Introduce a reasonable statistical framework for consistency properties.
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Mathematical context



Notation

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.

• Y is either a finite set (classification) or a subset of R (regression).

• Goal: construct a predictor F : X → R.

+ In ±1-classification, the final rule is +1 if F (x) > 0 and −1 otherwise.

• F = class of functions f : X → R (the weak learners).

• Objective: minimize over lin(F ) the empirical risk functional

Cn(F ) =
1
n

n∑
i=1

ψ(F (Xi ),Yi ).

• The loss function ψ : R× Y → R+ is convex in its first argument.

• Example: ψ(x , y) = (y − x)2 and

Cn(F ) =
1
n

n∑
i=1

(Yi − F (Xi ))2.
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A more general problem

• Clearly,
Cn(F ) = Eψ(F (X ),Y ),

where (X ,Y ) is a random pair with distribution µn.

• The population version of Cn is

C (F ) = Eψ(F (X1),Y1).

• General context: (X ,Y ) is a generic pair with distribution µX ,Y

. µX ,Y = distribution of (X1,Y1) (theoretical risk);

. µX ,Y = standard empirical measure µn (empirical risk);

. µX ,Y = any smoothed version of µn (smoothed empirical risk).

Objective

Minimize C (F ) = Eψ(F (X ),Y ) over lin(F ), where F ⊂ L2(µX ).

• Typical F : decision trees in Rd with k terminal nodes.
• Each f ∈ F takes the form f =

∑k
j=1 βj1Aj .

9
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Some assumptions

Subgradient
ξ(·, y) is a subgradient of the convex function ψ(·, y). Recall that

1. ξ(x , y) ∈ [∂−x ψ(x , y); ∂+
x ψ(x , y)].

2. ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).

Assumption A1

One has Eψ(0,Y ) <∞. In addition, for all F ∈ L2(µX ), there exists
δ > 0 such that

sup
G∈L2(µX ):‖G−F‖µX≤δ

(
E|∂−x ψ(G (X ),Y )|2 + E|∂+

x ψ(G (X ),Y )|2
)
<∞.

Interpretation

C (F ) <∞ for all F ∈ L2(µX ) and C is continuous.
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Some assumptions

Assumption A2

There exists α > 0 such that, for all y ∈ Y , the function ψ(·, y) is
α-strongly convex, i.e., for all (x1, x2) ∈ R2 and t ∈ [0, 1],

ψ(tx1 + (1− t)x2, y) ≤ tψ(x1, y) + (1− t)ψ(x2, y)− α

2
t(1− t)(x1− x2)2.

Interpretation
One has

ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2) +
α

2
(x1 − x2)2

instead of
ψ(x1, y) ≥ ψ(x2, y) + ξ(x2, y)(x1 − x2).
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Some assumptions

Assumption A3

There exists a positive constant L such that, for all (x1, x2) ∈ R2,

|E(ξ(x1,Y )− ξ(x2,Y ) |X )| ≤ L|x1 − x2|.

A more digest Assumption A′3
For all y ∈ Y , the function ψ(·, y) is continuously differentiable, and
there exists a positive constant L such that

|∂xψ(x1, y)− ∂xψ(x2, y)| ≤ L|x1 − x2|.

Interpretation

The functional C is differentiable at any F ∈ L2(µX ) with

dC (F ;G ) = 〈∇C (F ),G 〉µX
,

where ∇C (F )(x) :=
∫
∂xψ(F (x), y)µY |X=x(dy).
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Examples in regression analysis

• Squared error loss: ψ(x , y) = (y − x)2.

. Assumption A1: EY 2 <∞ 4

. Assumption A2: 2-strongly convex 4

. Assumption A′3: ∂xψ(x , y) = 2(x − y) and L = 2 4

• Absolute error loss: ψ(x , y) = |y − x |.
. Assumption A1: E|Y | <∞ 4

. Assumption A2: convex but not strongly convex 6

. Solution: regularization via

ψ(x , y) = |y − x |+ γx2,

which is (2γ)-strongly convex in x 4

. Assumption A′3: ψ(·, y) is not differentiable at y 6

. If µY |X has a bounded density, then Assumption A3 4, with

|E(ξ(x1,Y )− ξ(x2,Y ) |X )| ≤ 2(B + γ)|x1 − x2|.
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Examples in ±1-classification

• Often, ψ(x , y) = φ(yx), where φ : R→ R+ is convex.

• Logit loss: φ(u) = ln2(1 + e−u).

• Not strongly convex → regularization via ψ(x , y) = φ(yx) + γx2.

• Assumptions A1, A2, and A′3 4

• Other examples:
. Penalized sigmoid loss: ψ(x , y) = (1− tanh(βyx)) + γx2.
. 2(γ − β2)-strongly convex as soon as β <

√
γ.

. Assumptions A1, A2, and A′3 4

. Penalized lin-exp loss: ψ(x , y) = φ(yx) + γx2, where

φ(u) =

{
−u + 1 if u ≤ 0
e−u if u > 0.

. Assumptions A1, A2, and A′3 4
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Take-home message

1. Our assumptions include a large variety of learning problems.

2. Regularization is important.

3. Regularized objectives are in action in the XGBoost system.
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Two algorithms



The idea of gradient boosting

• Finding the infimum of the functional C over lin(F ) is challenging.

• It is an infinite-dimensional optimization problem.

Gradient boosting algorithm
Locate the infimum by sequentially producing a linear combination of
weak learners via a gradient-descent-type algorithm in L2(µX ).

• Fact 1: Under Assumption A1,

inf
F∈lin(F )

C (F ) = inf
F∈lin(F )

C (F ).

• Fact 2: Under Assumption A2, there exists a unique F̄ ∈ lin(F ) (the
boosting predictor) such that

C (F̄ ) = inf
F∈lin(F )

C (F ).
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Approach 1 (Mason et al., 2000)

• F = functions f : X → R such that 0 ∈ F , f ∈ F ⇔ −f ∈ F ,
and ‖f ‖µX

= 1 for f 6= 0.

• Example: all ±1-trees in Rd with k terminal nodes (plus zero).

• Start with F ∈ lin(F ).

? Which f ∈ F to add to F so that C (F + wf ) decreases at most?

• Knee-jerk reaction: take the opposite of the gradient of C at F .

6 Impossible, since our new function has to live in F .

• Solution: start from the approximate identity

C (F )− C (F + wf ) ≈ −w〈∇C (F ), f 〉µX

and choose f ∈ F that maximizes −〈∇C (F ), f 〉µX
.

4 General case: choose f ∈ F that maximizes −Eξ(F (X ),Y )f (X ).
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Gradient boosting Algorithm 1

1: Require (wt)t a sequence of positive real numbers.
2: Set t = 0 and start with F0 ∈ F .
3: Compute

ft+1 ∈ argmaxf∈F − Eξ(Ft(X ),Y )f (X )

and let Ft+1 = Ft + wt+1ft+1.
4: Take t ← t + 1 and go to step 3.

18



Some comments

• The algorithm performs a gradient-type descent in L2(µX ).

• Difference: the descent direction belongs to F .

• If ψ is continuously differentiable in its first argument, then

−Eξ(Ft(X ),Y )f (X ) = −〈∇C (Ft), f 〉µX
,

and, for ∇C (Ft) 6= 0,

−∇C (Ft)

‖∇C (Ft)‖µX

= argmaxF∈L2(µX ):‖F‖µX =1 − 〈∇C (Ft),F 〉µX
.

• Rationale: at each step, Algorithm 1 mimics the computation of the
negative gradient:

ft+1 ∈ argmaxf∈F − 〈∇C (Ft), f 〉µX
.
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Some comments

• Empirical case: the descent step takes the form

ft+1 ∈ argmaxf∈F −
1
n

n∑
i=1

∇C (Ft)(Xi ) · f (Xi ).

• Finding this optimum is a non-trivial problem → CART strategy.

• The sequence (wt)t should be carefully chosen for convergence.

• The algorithm is run forever: no stopping at this stage.

• Question: is it true that

lim
t→∞

C (Ft) = inf
F∈lin(F )

C (F ) ?
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Approach 2 (Friedman, 2001)

• P = functions f : X → R such that f ∈ P ⇔ −f ∈ P, and
af ∈P for all (a, f ) ∈ R×P.

• Example: all trees in Rd with k terminal nodes.

• Key idea: replace

ft+1 ∈ argmaxf∈F−Eξ(Ft(X ),Y )f (X )

by
ft+1 ∈ argminf∈PE(−ξ(Ft(X ),Y )−f (X ))2.

• Equivalently,

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X ),Y )f (X ) + ‖f ‖2µX

)
.
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Gradient boosting Algorithm 2

1: Require ν a positive real number.
2: Set t = 0 and start with F0 ∈P.
3: Compute

ft+1 ∈ argminf∈P

(
2Eξ(Ft(X ),Y )f (X ) + ‖f ‖2µX

)
and let Ft+1 = Ft + νft+1.

4: Take t ← t + 1 and go to step 3.

22



Some comments

• The step size ν is kept fixed during the iterations.

• Empirical setting with ψ continuously differentiable:

ft+1 ∈ argminf∈P

1
n

n∑
i=1

(−∇C (Ft)(Xi )− f (Xi ))2.

• ft+1 is fitted to the negative gradient instances −∇C (Ft)(Xi ).

• Example: when ψ(x , y) = (y − x)2/2, then

−∇C (Ft)(Xi ) = Yi − Ft(Xi ).

• This is at the origin of gradient boosting.
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Convergence



Algorithm 1

Step sizes: we take w0 > 0 arbitrarily and set

wt+1 = min
(
wt ,−(2L)−1Eξ(Ft(X ),Y )ft+1(X )

)
, t ≥ 0.

Theorem
Assume that Assumptions A1 and A3 are satisfied. Then

lim
t→∞

C (Ft) = inf
F∈lin(F )

C (F ).

. The result holds without Assumption A2.

. With A2, there is a unique boosting predictor F̄ ∈ lin(F ) such that

C (F̄ ) = inf
F∈lin(F )

C (F ).

. The theorem guarantees that limt→∞ C (Ft) = C (F̄ ).
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Mathematical machinery

Lemma
Assume that Assumptions A1 and A3 are satisfied. Then

C (Ft)− C (Ft+1) ≥ Lw2
t+1.

In particular, limt→∞ C (Ft) = infk C (Fk).

Corollary

Assume that lin(F ) = L2(µX ). Assume, in addition, that Assumptions
A1, A2, and A′3 are satisfied. Then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX )C (F ).
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Algorithm 2

Theorem
Assume that Assumptions A1-A3 are satisfied, with 0 < ν < 1/(2L).
Then

lim
t→∞

C (Ft) = inf
F∈lin(P)

C (F ).

. The result requires Assumption A2.

. The theorem guarantees that limt→∞ C (Ft) = C (F̄ ).

. If lin(P) = L2(µX ) and A′3 is satisfied, then

lim
t→∞

‖Ft − F̄‖µX
= 0,

where
F̄ = argminF∈L2(µX )C (F ).
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Discussion

• Empirical setting: both algorithms track the infimum of

Cn(F ) =
1
n

n∑
i=1

ψ(F (Xi ),Yi )

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

• Ft and F̄n are functions of the data set Dn.

• So far: no information on the statistical behavior of F̄n.

• Question: probabilistic properties of F̄n as n→∞?
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Discussion

• Catastrophic situations can happen → “size” of lin(F ) or lin(P).

• Example: ψ(x , y) = (y − x)2 and F = all trees with d + 1 leaves.
Then

lim
t→∞

Cn(Ft) = Cn(F̄n),

where
F̄n = argminF∈L2(Pn)Cn(F ).

• Overfitting: F̄n reproduces the data.

• No chance that F̄n converges to F ?(x) = E(Y |X = x).

• Classical solution: early stopping.
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Can we avoid early stopping?

• Yes, under appropriate conditions.

• Problem: the minimizations are performed over vector spaces.

6 No question of imposing constraints on the coefficients.

4 Solution: carefully constraint the “complexity” of the vector spaces.

• Importance of having a strongly convex risk functional to minimize.

4 Solution: possible regularization with an L2-type penalty.
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Large sample properties



Context

• Observations: Dn = {(X1,Y1), . . . , (Xn,Yn)} in X × Y ⊂ Rd ×R.

• X is a compact subset of Rd .

• Each Xi has a density g on X , with

0 < inf
X

g ≤ sup
X

g <∞.

• We concentrate on Algorithm 1.

• Weak learners: a finite class Fn of ±1-values simple functions on X .

• Example: a finite class of trees with k leaves.

• Consequence: any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• Assumption: there exists (vn)n such that min1≤j≤N λ(An
j ) ≥ vn.
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Objective

• Objective: minimize over lin(Fn) the empirical risk functional

Cn(F ) =
1
n

n∑
i=1

ψ(F (Xi ),Yi ),

where ψ(x , y) = φ(x , y) + γnx
2.

• Differently:
Cn(F ) = An(F ) + γn‖F‖2Pn

,

where

An(F ) =
1
n

n∑
i=1

φ(F (Xi ),Yi ).

• The strong convexity Assumption A2 is satisfied.
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Consistency of the boosting predictor

• Boosting predictor: F̄n = argminF∈lin(Fn)Cn(F ).

• Whenever Assumption A3 is satisfied, limt→∞ Cn(Ft) = Cn(F̄n).

• Objective: prove that limn→∞ A(F̄n) = A(F ?), where

A(F ) = Eφ(F (X1),Y1) and F ? ∈ argminF∈L2(P)A(F ).

• Example 1: F ?(x) = E(Y |X = x) with φ(x , y) = (y − x)2.

• Example 2: F ?(x) = log( η(x)
1−η(x) ) with φ(x , y) = log2(1 + e−yx).

• What we know so far:

An(F̄n) + γn‖F̄n‖2Pn
−A(F ?) = inf

F∈lin(Fn)

(
An(F ) + γn‖F‖2Pn

−A(F ?)
)
.
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Main result

Assumption A4

For all p ≥ 0, there exists a constant ζ(p) > 0 such that, for all
(x1, x2, y) ∈ R2 × Y with max(|x1|, |x2|) ≤ p,

|φ(x1, y)− φ(x2, y)| ≤ ζ(p)|x1 − x2|.

Theorem
Assume that Assumptions A3 and A4 are satisfied, and that F ? is
bounded. Assume, in addition, that diam(An(X ))→ 0 in probability as
n→∞. Then, provided γn → 0, N →∞, logN

nvn
→ 0, and

1
√
nvnγn

ζ

(√
2φ̄

vnγn infX g

)
→ 0,

we have limn→∞EA(F̄n) = A(F ?).
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Discussion

• Gradient boosting does not always overfit.

• If the function φ(·, y) is already α-strongly convex: 4

• Example:
. X = [0, 1]d ;
. Fn = all trees on [0, 1]d with kn leaves;
. Cuts are orthogonal and located at the middle of the cells;
. Although combinatorially rich, this family of trees is finite.
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• If the function φ(·, y) is already α-strongly convex: 4
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Example

• Any F ∈ lin(Fn) takes the form F =
∑N

j=1 αj1An
j
.

• N ≤ 2dkn and the An
j form a regular grid over [0, 1]d .

• Also, vn ≥ 2−dkn .

• With φ(x , y) = (y − x)2, the conditions of the theorem read

kn →∞,
kn2dkn

n
→ 0, and

2dkn√
n
→ 0.
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±1-classification

• Each F defines a classifier gF in a natural way:

gF (x) =

{
+1 if F (x) > 0
−1 otherwise.

• Proximity between L(gF ) = P(gF (X ) 6= Y ) and the Bayes risk L?.

• Most often: L(gF )− L? is small as long as A(F )− A(F ?) is.

• References: Zhang (2004), Bartlett et al. (2006).

• For such well-behaved losses,

lim
n→∞

EL(gF̄n
) = L?.
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Boosting gradient boosting



Accelerated gradient boosting

• Gradient boosting is a first-order optimization procedure.

• Large-scale machine learning has promoted accelerated first-order schemes.

• Nesterov’s accelerated gradient descent (1983): x0 = y0, and

xt+1 = yt − w∇f (yt)

yt+1 = (1− γt)xt+1 + γtxt ,

where

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, and γt =

1− λt
λt+1

.

• An optimal method for smooth convex optimization: rate O(1/t2).

• Applications in sparse linear regression, compressed sensing, distributed
gradient descent, deep and recurrent neural networks, etc.

+ Idea: combine gradient tree boosting and Nesterov’s mechanism.
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AGB algorithm

1: for t = 0 to (T − 1) do

2: For i = 1, . . . , n, compute the negative gradient instances

Zi,t+1 = −∇Cn(Gt)(Xi ).

3: Fit a regression tree to the pairs (Xi ,Zi,t+1), giving terminal nodes
Rj,t+1, 1 ≤ j ≤ k .

4: For j = 1, . . . , k , compute

wj,t+1 ∈ argminw>0

∑
Xi∈Rj,t+1

ψ(Gt(Xi ) + w ,Yi ).

5: Update

(a) Ft+1 = Gt + ν
∑k

j=1 wj,t+11Rj,t+1 .

(b) Gt+1 = (1− γt)Ft+1 + γtFt .

6: end for

7: Output FT .
38
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AGB

GB
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Model 1: AGB

Model 1: GB
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Take-home message

• AGB retains the excellent performance of gradient boosting.

• It is less sensitive to the shrinkage parameter.

• It outputs sparse predictors.

• A decisive advantage in large-scale learning.

• More at github.com/lrouviere/AGB.
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