Optimization by gradient boosting

Gérard Biau Nantes, March 2018

Benoît Cadre (ENS Rennes)

Laurent Rouvière (University Rennes 2)

Outline

- 1. Boosting and gradient boosting
- 2. Mathematical context
- 3. Two algorithms
- 4. Convergence
- 5. Large sample properties
- 6. Boosting gradient boosting

Boosting and gradient boosting

• Boosting: algorithms that convert weak learners to strong ones.

- Boosting: algorithms that convert weak learners to strong ones.
- Idea: combine simple predictors to produce a weighted committee.

- Boosting: algorithms that convert weak learners to strong ones.
- Idea: combine simple predictors to produce a weighted committee.
- One of the most powerful learning ideas introduced in modern times.

- Boosting: algorithms that convert weak learners to strong ones.
- Idea: combine simple predictors to produce a weighted committee.
- One of the most powerful learning ideas introduced in modern times.
- Considerable impact in statistics and machine learning.

• Adaboost is an iterative classification algorithm.

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - > At each iteration, select a base classifier and assign a weight to it;

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - ▷ At each iteration, select a base classifier and assign a weight to it;
 - ▷ Misclassified observations have their weights increased;

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - ▷ At each iteration, select a base classifier and assign a weight to it;
 - ▷ Misclassified observations have their weights increased;
 - ▷ Output the weighted majority vote of the chosen classifiers.

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - ▷ At each iteration, select a base classifier and assign a weight to it;
 - ▷ Misclassified observations have their weights increased;
 - ▷ Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman's papers and technical reports.

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - ▷ At each iteration, select a base classifier and assign a weight to it;
 - ▷ Misclassified observations have their weights increased;
 - ▷ Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman's papers and technical reports.

• AdaBoost is a gradient-descent-type algorithm in a function space.

- Adaboost is an iterative classification algorithm.
- For a fixed number of iterations, do:
 - > At each iteration, select a base classifier and assign a weight to it;
 - ▷ Misclassified observations have their weights increased;
 - ▷ Output the weighted majority vote of the chosen classifiers.

1997-2004: Breiman's papers and technical reports.

- AdaBoost is a gradient-descent-type algorithm in a function space.
- Boosting is at the frontier of numerical optimization and statistics.

• A general statistical framework for boosting.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.
- Special attention paid to decision trees as weak learners.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.
- Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.
- Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

• Boosting is a principle to optimize a convex risk in a function space.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.
- Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

- Boosting is a principle to optimize a convex risk in a function space.
- The increments point in the negative gradient direction.

- A general statistical framework for boosting.
- Interpretation as optimization in a function space.
- Arbitrary loss functions, for classification and regression.
- Special attention paid to decision trees as weak learners.

2000: Mason et al. analysis.

- Boosting is a principle to optimize a convex risk in a function space.
- The increments point in the negative gradient direction.
- First attempt to understand the mathematical forces of boosting.

• Empirical risk minimization with a convex loss.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

• A scalable implementation of gradient tree boosting.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

- A scalable implementation of gradient tree boosting.
- Inspired by Friedman's principles.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

- A scalable implementation of gradient tree boosting.
- Inspired by Friedman's principles.
- Outstanding results in numerous data challenges.

2003-2007: Boosting from a statistical perspective.

- Empirical risk minimization with a convex loss.
- Examples: Blanchard et al. (2003), Lugosi and Vayatis (2004).
- Idealized models: statistical properties but no optimization.
- Regularization via early stopping.
- Examples: Bühlmann and Yu (2003), Mannor et al. (2003), Zhang and Yu (2005), Bickel et al. (2006), Bartlett and Traskin (2007).

2016: XGBoost of Chen and Guestrin.

- A scalable implementation of gradient tree boosting.
- Inspired by Friedman's principles.
- Outstanding results in numerous data challenges.
- The objective is regularized to avoid overfitting.

• There is to date no sound theory of gradient boosting.

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.
- Our objective today:

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.
- Our objective today:
 - ▷ Clarify the mathematical principles of the algorithms;

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.
- Our objective today:
 - ▷ Clarify the mathematical principles of the algorithms;
 - \triangleright Adopt the point of view of functional optimization in L^2 ;

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.
- Our objective today:
 - ▷ Clarify the mathematical principles of the algorithms;
 - \triangleright Adopt the point of view of functional optimization in L^2 ;
 - ▷ Prove convergence as the number of iterations tends to infinity;

- There is to date no sound theory of gradient boosting.
- Optimization is the natural environment for gradient-type methods.
- Our objective today:
 - ▷ Clarify the mathematical principles of the algorithms;
 - \triangleright Adopt the point of view of functional optimization in L^2 ;
 - ▷ Prove convergence as the number of iterations tends to infinity;
 - ▷ Introduce a reasonable statistical framework for consistency properties.

Mathematical context

• Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.
- In ± 1 -classification, the final rule is +1 if F(x) > 0 and -1 otherwise.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.
- In ± 1 -classification, the final rule is +1 if F(x) > 0 and -1 otherwise.
 - $\mathscr{F} = \text{class of functions } f : \mathscr{X} \to \mathbb{R}$ (the weak learners).

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.
- In ± 1 -classification, the final rule is +1 if F(x) > 0 and -1 otherwise.
 - $\mathscr{F} = \text{class of functions } f : \mathscr{X} \to \mathbb{R}$ (the weak learners).
 - Objective: minimize over $lin(\mathscr{F})$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i).$$

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.
- In ± 1 -classification, the final rule is +1 if F(x) > 0 and -1 otherwise.
 - $\mathscr{F} = \text{class of functions } f : \mathscr{X} \to \mathbb{R}$ (the weak learners).
 - Objective: minimize over $lin(\mathscr{F})$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i).$$

• The loss function $\psi: \mathbb{R} \times \mathscr{Y} \to \mathbb{R}_+$ is convex in its first argument.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{Y} is either a finite set (classification) or a subset of \mathbb{R} (regression).
- Goal: construct a predictor $F : \mathscr{X} \to \mathbb{R}$.
- In ± 1 -classification, the final rule is +1 if F(x) > 0 and -1 otherwise.
 - $\mathscr{F} = \text{class of functions } f : \mathscr{X} \to \mathbb{R}$ (the weak learners).
 - Objective: minimize over $lin(\mathscr{F})$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i).$$

- The loss function $\psi: \mathbb{R} \times \mathscr{Y} \to \mathbb{R}_+$ is convex in its first argument.
- Example: $\psi(x, y) = (y x)^2$ and

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n (Y_i - F(X_i))^2.$$

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

• General context: (X, Y) is a generic pair with distribution $\mu_{X,Y}$

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

- General context: (X, Y) is a generic pair with distribution $\mu_{X,Y}$
 - $\triangleright \mu_{X,Y}$ = distribution of (X_1, Y_1) (theoretical risk);
 - $\triangleright \mu_{X,Y}$ = standard empirical measure μ_n (empirical risk);
 - $\triangleright \mu_{X,Y}$ = any smoothed version of μ_n (smoothed empirical risk).

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

- General context: (X, Y) is a generic pair with distribution $\mu_{X,Y}$
 - $\triangleright \mu_{X,Y}$ = distribution of (X_1, Y_1) (theoretical risk);
 - $\triangleright \mu_{X,Y}$ = standard empirical measure μ_n (empirical risk);
 - $\triangleright \mu_{X,Y}$ = any smoothed version of μ_n (smoothed empirical risk).

Objective

Minimize $C(F) = \mathbb{E}\psi(F(X), Y)$ over $\lim(\mathscr{F})$, where $\mathscr{F} \subset L^2(\mu_X)$.

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

- General context: (X, Y) is a generic pair with distribution $\mu_{X,Y}$
 - $\triangleright \mu_{X,Y}$ = distribution of (X_1, Y_1) (theoretical risk);
 - $\triangleright \mu_{X,Y}$ = standard empirical measure μ_n (empirical risk);
 - $\triangleright \mu_{X,Y}$ = any smoothed version of μ_n (smoothed empirical risk).

Objective

Minimize $C(F) = \mathbb{E}\psi(F(X), Y)$ over $\lim(\mathscr{F})$, where $\mathscr{F} \subset L^2(\mu_X)$.

• Typical \mathscr{F} : decision trees in \mathbb{R}^d with k terminal nodes.

• Clearly,

$$C_n(F) = \mathbb{E}\psi(F(X), Y),$$

where (X, Y) is a random pair with distribution μ_n .

• The population version of C_n is

$$C(F) = \mathbb{E}\psi(F(X_1), Y_1).$$

- General context: (X, Y) is a generic pair with distribution $\mu_{X,Y}$
 - $\triangleright \mu_{X,Y}$ = distribution of (X_1, Y_1) (theoretical risk);
 - $\triangleright \mu_{X,Y}$ = standard empirical measure μ_n (empirical risk);
 - $\triangleright \mu_{X,Y}$ = any smoothed version of μ_n (smoothed empirical risk).

Objective

Minimize $C(F) = \mathbb{E}\psi(F(X), Y)$ over $\lim(\mathscr{F})$, where $\mathscr{F} \subset L^2(\mu_X)$.

- Typical \mathscr{F} : decision trees in \mathbb{R}^d with k terminal nodes.
- Each $f \in \mathscr{F}$ takes the form $f = \sum_{j=1}^{k} \beta_j \mathbb{1}_{A_j}$.

Some assumptions

Subgradient

 $\xi(\cdot,y)$ is a subgradient of the convex function $\psi(\cdot,y)$. Recall that

- 1. $\xi(x,y) \in [\partial_x^- \psi(x,y); \partial_x^+ \psi(x,y)].$
- 2. $\psi(x_1, y) \geq \psi(x_2, y) + \xi(x_2, y)(x_1 x_2).$

Some assumptions

Subgradient

 $\xi(\cdot,y)$ is a subgradient of the convex function $\psi(\cdot,y)$. Recall that

1.
$$\xi(x, y) \in [\partial_x^- \psi(x, y); \partial_x^+ \psi(x, y)].$$

2. $\psi(x_1, y) \ge \psi(x_2, y) + \xi(x_2, y)(x_1 - x_2).$

Assumption A₁

One has $\mathbb{E}\psi(0, Y) < \infty$. In addition, for all $F \in L^2(\mu_X)$, there exists $\delta > 0$ such that

 $\sup_{G\in L^2(\mu_X): \|G-F\|_{\mu_X} \le \delta} \left(\mathbb{E} |\partial_x^- \psi(G(X), Y)|^2 + \mathbb{E} |\partial_x^+ \psi(G(X), Y)|^2 \right) < \infty.$

Some assumptions

Subgradient

 $\xi(\cdot,y)$ is a subgradient of the convex function $\psi(\cdot,y)$. Recall that

1.
$$\xi(x, y) \in [\partial_x^- \psi(x, y); \partial_x^+ \psi(x, y)].$$

2. $\psi(x_1, y) \ge \psi(x_2, y) + \xi(x_2, y)(x_1 - x_2).$

Assumption A₁

One has $\mathbb{E}\psi(0, Y) < \infty$. In addition, for all $F \in L^2(\mu_X)$, there exists $\delta > 0$ such that

 $\sup_{G\in L^2(\mu_X): \|G-F\|_{\mu_X} \leq \delta} \left(\mathbb{E} |\partial_x^- \psi(G(X), Y)|^2 + \mathbb{E} |\partial_x^+ \psi(G(X), Y)|^2 \right) < \infty.$

Interpretation

 $C(F) < \infty$ for all $F \in L^2(\mu_X)$ and C is continuous.

Assumption A₂

There exists $\alpha > 0$ such that, for all $y \in \mathscr{Y}$, the function $\psi(\cdot, y)$ is α -strongly convex, i.e., for all $(x_1, x_2) \in \mathbb{R}^2$ and $t \in [0, 1]$,

 $\psi(tx_1+(1-t)x_2,y) \leq t\psi(x_1,y)+(1-t)\psi(x_2,y)-\frac{lpha}{2}t(1-t)(x_1-x_2)^2.$

Assumption A₂

There exists $\alpha > 0$ such that, for all $y \in \mathscr{Y}$, the function $\psi(\cdot, y)$ is α -strongly convex, i.e., for all $(x_1, x_2) \in \mathbb{R}^2$ and $t \in [0, 1]$,

$$\psi(tx_1+(1-t)x_2,y) \leq t\psi(x_1,y)+(1-t)\psi(x_2,y)-rac{lpha}{2}t(1-t)(x_1-x_2)^2.$$

Interpretation

One has

$$\psi(x_1,y) \ge \psi(x_2,y) + \xi(x_2,y)(x_1-x_2) + \frac{lpha}{2}(x_1-x_2)^2$$

instead of

$$\psi(x_1, y) \ge \psi(x_2, y) + \xi(x_2, y)(x_1 - x_2).$$

Assumption A₃

There exists a positive constant *L* such that, for all $(x_1, x_2) \in \mathbb{R}^2$,

$$|\mathbb{E}(\xi(x_1, Y) - \xi(x_2, Y) | X)| \le L|x_1 - x_2|.$$

Assumption A₃

There exists a positive constant *L* such that, for all $(x_1, x_2) \in \mathbb{R}^2$,

$$|\mathbb{E}(\xi(x_1, Y) - \xi(x_2, Y) | X)| \le L|x_1 - x_2|.$$

A more digest Assumption A'_3

For all $y \in \mathscr{Y}$, the function $\psi(\cdot, y)$ is continuously differentiable, and there exists a positive constant L such that

 $|\partial_{\mathsf{x}}\psi(x_1,y)-\partial_{\mathsf{x}}\psi(x_2,y)|\leq \mathsf{L}|x_1-x_2|.$

Assumption A₃

There exists a positive constant *L* such that, for all $(x_1, x_2) \in \mathbb{R}^2$,

$$|\mathbb{E}(\xi(x_1, Y) - \xi(x_2, Y) | X)| \le L|x_1 - x_2|.$$

A more digest Assumption A'_3

For all $y \in \mathscr{Y}$, the function $\psi(\cdot, y)$ is continuously differentiable, and there exists a positive constant L such that

$$|\partial_x \psi(x_1, y) - \partial_x \psi(x_2, y)| \leq L|x_1 - x_2|.$$

Interpretation

The functional *C* is differentiable at any $F \in L^2(\mu_X)$ with

 $dC(F;G) = \langle \nabla C(F), G \rangle_{\mu_X},$

where $\nabla C(F)(x) := \int \partial_x \psi(F(x), y) \mu_{Y|X=x}(\mathrm{d}y).$

• Squared error loss: $\psi(x, y) = (y - x)^2$.

• Squared error loss: $\psi(x, y) = (y - x)^2$.

 \triangleright Assumption **A**₁: $\mathbb{E}Y^2 < \infty$ \checkmark

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - \triangleright Assumption $A_1: \ \mathbb{E} \, Y^2 < \infty$ \checkmark
 - $\triangleright~$ Assumption A2: 2-strongly convex $\checkmark~$

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - \triangleright Assumption $A_1: \ \mathbb{E} \, Y^2 < \infty$ \checkmark
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption **A**'₃: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 \checkmark

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - ▷ Assumption A_1 : $\mathbb{E}Y^2 < \infty$ ✓
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'_3: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 V
- Absolute error loss: $\psi(x, y) = |y x|$.

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - ▷ Assumption A_1 : $\mathbb{E}Y^2 < \infty$ ✓
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'_3: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 V
- Absolute error loss: $\psi(x, y) = |y x|$.
 - \triangleright Assumption A₁: $\mathbb{E}|Y| < \infty$ V

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - ▷ Assumption A_1 : $\mathbb{E}Y^2 < \infty$ ✓
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'_3: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 V
- Absolute error loss: $\psi(x, y) = |y x|$.
 - \triangleright Assumption A₁: $\mathbb{E}|Y| < \infty$ V
 - ▷ Assumption A₂: convex but not strongly convex **≭**

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - ▷ Assumption A_1 : $\mathbb{E}Y^2 < \infty$ ✓
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'_3: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 V
- Absolute error loss: $\psi(x, y) = |y x|$.
 - \triangleright Assumption A₁: $\mathbb{E}|Y| < \infty$ V
 - ▷ Assumption A₂: convex but not strongly convex **≭**
 - Solution: regularization via

$$\psi(x,y) = |y-x| + \gamma x^2,$$

which is (2γ) -strongly convex in $x \checkmark$

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - \triangleright Assumption A_1 : $\mathbb{E}Y^2 < \infty$ \checkmark
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'₃: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 \checkmark
- Absolute error loss: $\psi(x, y) = |y x|$.
 - \triangleright Assumption A₁: $\mathbb{E}|Y| < \infty$ V
 - ▷ Assumption A₂: convex but not strongly convex ¥
 - Solution: regularization via

$$\psi(x,y) = |y-x| + \gamma x^2,$$

which is (2γ) -strongly convex in $x \checkmark$

 \triangleright Assumption A'₃: $\psi(\cdot, y)$ is not differentiable at y *****

- Squared error loss: $\psi(x, y) = (y x)^2$.
 - ▷ Assumption A_1 : $\mathbb{E}Y^2 < \infty$ ✓
 - \triangleright Assumption A₂: 2-strongly convex \checkmark
 - \triangleright Assumption A'₃: $\partial_x \psi(x, y) = 2(x y)$ and L = 2 \checkmark
- Absolute error loss: $\psi(x, y) = |y x|$.
 - \triangleright Assumption A₁: $\mathbb{E}|Y| < \infty$ \checkmark
 - ▷ Assumption A₂: convex but not strongly convex ¥
 - Solution: regularization via

$$\psi(x,y) = |y-x| + \gamma x^2,$$

which is (2γ) -strongly convex in $x \checkmark$

- ▷ Assumption \mathbf{A}'_3 : $\psi(\cdot, y)$ is not differentiable at y **¥**
- \triangleright If $\mu_{Y|X}$ has a bounded density, then Assumption A₃ \checkmark , with

$$|\mathbb{E}(\xi(x_1, Y) - \xi(x_2, Y) | X)| \le 2(B + \gamma)|x_1 - x_2|.$$

• Often, $\psi(x, y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.

- Often, $\psi(x, y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.

- Often, $\psi(x,y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.

- Often, $\psi(x,y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$

- Often, $\psi(x,y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$
- Other examples:
 - ▷ Penalized sigmoid loss: $\psi(x, y) = (1 \tanh(\beta yx)) + \gamma x^2$.

- Often, $\psi(x,y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$
- Other examples:
 - ▷ Penalized sigmoid loss: $\psi(x, y) = (1 \tanh(\beta yx)) + \gamma x^2$.
 - $\triangleright 2(\gamma \beta^2)$ -strongly convex as soon as $\beta < \sqrt{\gamma}$.

- Often, $\psi(x, y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$
- Other examples:
 - ▷ Penalized sigmoid loss: $\psi(x, y) = (1 \tanh(\beta yx)) + \gamma x^2$.
 - $\triangleright 2(\gamma \beta^2)$ -strongly convex as soon as $\beta < \sqrt{\gamma}$.
 - \triangleright Assumptions A₁, A₂, and A'₃ \checkmark

- Often, $\psi(x, y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$
- Other examples:
 - ▷ Penalized sigmoid loss: $\psi(x, y) = (1 \tanh(\beta yx)) + \gamma x^2$.
 - $\triangleright 2(\gamma \beta^2)$ -strongly convex as soon as $\beta < \sqrt{\gamma}$.
 - \triangleright Assumptions A₁, A₂, and A'₃ \checkmark
 - ▷ Penalized lin-exp loss: $\psi(x, y) = \phi(yx) + \gamma x^2$, where

$$\phi(u) = \begin{cases} -u+1 & \text{if } u \leq 0\\ e^{-u} & \text{if } u > 0. \end{cases}$$

- Often, $\psi(x, y) = \phi(yx)$, where $\phi : \mathbb{R} \to \mathbb{R}_+$ is convex.
- Logit loss: $\phi(u) = \ln_2(1 + e^{-u})$.
- Not strongly convex \rightarrow regularization via $\psi(x, y) = \phi(yx) + \gamma x^2$.
- Assumptions A_1 , A_2 , and $A_3' \checkmark$
- Other examples:
 - ▷ Penalized sigmoid loss: $\psi(x, y) = (1 \tanh(\beta yx)) + \gamma x^2$.
 - $\triangleright 2(\gamma \beta^2)$ -strongly convex as soon as $\beta < \sqrt{\gamma}$.
 - \triangleright Assumptions A₁, A₂, and A'₃ \checkmark
 - ▷ Penalized lin-exp loss: $\psi(x, y) = \phi(yx) + \gamma x^2$, where

$$\phi(u) = \begin{cases} -u+1 & \text{if } u \leq 0\\ e^{-u} & \text{if } u > 0. \end{cases}$$

 $\triangleright\,$ Assumptions $\mathsf{A}_1,\,\mathsf{A}_2,\,\text{and}\,\,\mathsf{A}_3'\,\checkmark\,$

1. Our assumptions include a large variety of learning problems.

- 1. Our assumptions include a large variety of learning problems.
- 2. Regularization is important.

- 1. Our assumptions include a large variety of learning problems.
- 2. Regularization is important.
- 3. Regularized objectives are in action in the XGBoost system.

Two algorithms

• Finding the infimum of the functional C over $lin(\mathscr{F})$ is challenging.

- Finding the infimum of the functional C over $lin(\mathscr{F})$ is challenging.
- It is an infinite-dimensional optimization problem.

- Finding the infimum of the functional C over $lin(\mathcal{F})$ is challenging.
- It is an infinite-dimensional optimization problem.

Gradient boosting algorithm

Locate the infimum by sequentially producing a linear combination of weak learners via a gradient-descent-type algorithm in $L^2(\mu_X)$.

- Finding the infimum of the functional C over $lin(\mathcal{F})$ is challenging.
- It is an infinite-dimensional optimization problem.

Gradient boosting algorithm

Locate the infimum by sequentially producing a linear combination of weak learners via a gradient-descent-type algorithm in $L^2(\mu_X)$.

• Fact 1: Under Assumption A₁,

$$\inf_{F\in \mathsf{lin}(\mathscr{F})} C(F) = \inf_{F\in \overline{\mathsf{lin}(\mathscr{F})}} C(F).$$

- Finding the infimum of the functional C over $lin(\mathcal{F})$ is challenging.
- It is an infinite-dimensional optimization problem.

Gradient boosting algorithm

Locate the infimum by sequentially producing a linear combination of weak learners via a gradient-descent-type algorithm in $L^2(\mu_X)$.

• Fact 1: Under Assumption A₁,

$$\inf_{F\in \mathsf{lin}(\mathscr{F})} C(F) = \inf_{F\in \overline{\mathsf{lin}}(\mathscr{F})} C(F).$$

Fact 2: Under Assumption A₂, there exists a unique F
 ∈ lin(𝔅) (the boosting predictor) such that

$$C(\overline{F}) = \inf_{F \in \mathsf{lin}(\mathscr{F})} C(F).$$

• $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $||f||_{\mu_{X}} = 1$ for $f \neq 0$.

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $||f||_{\mu_X} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $\|f\|_{\mu_{X}} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $||f||_{\mu_X} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.
- ? Which $f \in \mathscr{F}$ to add to F so that C(F + wf) decreases at most?

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $||f||_{\mu_X} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.
- ? Which $f \in \mathscr{F}$ to add to F so that C(F + wf) decreases at most?
- Knee-jerk reaction: take the opposite of the gradient of C at F.

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $\|f\|_{\mu_{X}} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.
- ? Which $f \in \mathscr{F}$ to add to F so that C(F + wf) decreases at most?
- Knee-jerk reaction: take the opposite of the gradient of C at F.
- ***** Impossible, since our new function has to live in \mathscr{F} .

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $\|f\|_{\mu_{X}} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.
- ? Which $f \in \mathscr{F}$ to add to F so that C(F + wf) decreases at most?
- Knee-jerk reaction: take the opposite of the gradient of C at F.
- **x** Impossible, since our new function has to live in \mathscr{F} .
- Solution: start from the approximate identity

$$C(F) - C(F + wf) \approx -w \langle \nabla C(F), f \rangle_{\mu_X}$$

and choose $f \in \mathscr{F}$ that maximizes $-\langle \nabla C(F), f \rangle_{\mu_{X}}$.

- $\mathscr{F} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $0 \in \mathscr{F}$, $f \in \mathscr{F} \Leftrightarrow -f \in \mathscr{F}$, and $\|f\|_{\mu_{X}} = 1$ for $f \neq 0$.
- Example: all ± 1 -trees in \mathbb{R}^d with k terminal nodes (plus zero).
- Start with $F \in lin(\mathscr{F})$.
- ? Which $f \in \mathscr{F}$ to add to F so that C(F + wf) decreases at most?
- Knee-jerk reaction: take the opposite of the gradient of C at F.
- **x** Impossible, since our new function has to live in \mathscr{F} .
- Solution: start from the approximate identity

$$C(F) - C(F + wf) \approx -w \langle \nabla C(F), f \rangle_{\mu_X}$$

and choose $f \in \mathscr{F}$ that maximizes $-\langle \nabla C(F), f \rangle_{\mu_X}$.

✓ General case: choose $f \in \mathscr{F}$ that maximizes $-\mathbb{E}\xi(F(X), Y)f(X)$.

- 1: **Require** $(w_t)_t$ a sequence of positive real numbers.
- 2: Set t = 0 and start with $F_0 \in \mathscr{F}$.
- 3: Compute

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \mathbb{E}\xi(F_t(X), Y)f(X)$$

and let $F_{t+1} = F_t + w_{t+1}f_{t+1}$.

4: **Take** $t \leftarrow t + 1$ and **go** to step 3.

• The algorithm performs a gradient-type descent in $L^2(\mu_X)$.

Some comments

- The algorithm performs a gradient-type descent in $L^2(\mu_X)$.
- Difference: the descent direction belongs to \mathscr{F} .

Some comments

- The algorithm performs a gradient-type descent in $L^2(\mu_X)$.
- Difference: the descent direction belongs to \mathscr{F} .
- If ψ is continuously differentiable in its first argument, then

$$-\mathbb{E}\xi(F_t(X),Y)f(X) = -\langle \nabla C(F_t),f\rangle_{\mu_X},$$

and, for $\nabla C(F_t) \neq 0$, $\frac{-\nabla C(F_t)}{\|\nabla C(F_t)\|_{\mu_X}} = \arg \max_{F \in L^2(\mu_X): \|F\|_{\mu_X} = 1} - \langle \nabla C(F_t), F \rangle_{\mu_X}.$

Some comments

- The algorithm performs a gradient-type descent in $L^2(\mu_X)$.
- Difference: the descent direction belongs to \mathscr{F} .
- If ψ is continuously differentiable in its first argument, then

$$-\mathbb{E}\xi(F_t(X),Y)f(X) = -\langle \nabla C(F_t),f\rangle_{\mu_X},$$

and, for
$$\nabla C(F_t) \neq 0$$
,
$$\frac{-\nabla C(F_t)}{\|\nabla C(F_t)\|_{\mu_X}} = \arg \max_{F \in L^2(\mu_X): \|F\|_{\mu_X} = 1} - \langle \nabla C(F_t), F \rangle_{\mu_X}.$$

• Rationale: at each step, Algorithm 1 mimics the computation of the negative gradient:

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \langle \nabla C(F_t), f \rangle_{\mu_X}.$$

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \frac{1}{n} \sum_{i=1}^{n} \nabla C(F_t)(X_i) \cdot f(X_i).$$

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \frac{1}{n} \sum_{i=1}^{n} \nabla C(F_t)(X_i) \cdot f(X_i).$$

• Finding this optimum is a non-trivial problem \rightarrow CART strategy.

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \frac{1}{n} \sum_{i=1}^{n} \nabla C(F_t)(X_i) \cdot f(X_i).$$

- Finding this optimum is a non-trivial problem \rightarrow CART strategy.
- The sequence $(w_t)_t$ should be carefully chosen for convergence.

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \frac{1}{n} \sum_{i=1}^{n} \nabla C(F_t)(X_i) \cdot f(X_i).$$

- Finding this optimum is a non-trivial problem \rightarrow CART strategy.
- The sequence $(w_t)_t$ should be carefully chosen for convergence.
- The algorithm is run forever: no stopping at this stage.

$$f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \frac{1}{n} \sum_{i=1}^{n} \nabla C(F_t)(X_i) \cdot f(X_i).$$

- Finding this optimum is a non-trivial problem \rightarrow CART strategy.
- The sequence $(w_t)_t$ should be carefully chosen for convergence.
- The algorithm is run forever: no stopping at this stage.
- Question: is it true that

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \mathsf{lin}(\mathscr{F})} C(F) \quad ?$$

• $\mathscr{P} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $f \in \mathscr{P} \Leftrightarrow -f \in \mathscr{P}$, and $af \in \mathscr{P}$ for all $(a, f) \in \mathbb{R} \times \mathscr{P}$.

- $\mathscr{P} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $f \in \mathscr{P} \Leftrightarrow -f \in \mathscr{P}$, and $af \in \mathscr{P}$ for all $(a, f) \in \mathbb{R} \times \mathscr{P}$.
- Example: all trees in \mathbb{R}^d with k terminal nodes.

- $\mathscr{P} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $f \in \mathscr{P} \Leftrightarrow -f \in \mathscr{P}$, and $af \in \mathscr{P}$ for all $(a, f) \in \mathbb{R} \times \mathscr{P}$.
- Example: all trees in \mathbb{R}^d with k terminal nodes.
- Key idea: replace

 $f_{t+1} \in \operatorname{arg\,max}_{f \in \mathscr{F}} - \mathbb{E}\xi(F_t(X), Y)f(X)$

- $\mathscr{P} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $f \in \mathscr{P} \Leftrightarrow -f \in \mathscr{P}$, and $af \in \mathscr{P}$ for all $(a, f) \in \mathbb{R} \times \mathscr{P}$.
- Example: all trees in \mathbb{R}^d with k terminal nodes.
- Key idea: replace

$$f_{t+1} \in \arg \max_{f \in \mathscr{F}} - \mathbb{E}\xi(F_t(X), Y)f(X)$$

by

$$f_{t+1} \in \operatorname{arg\,min}_{f \in \mathscr{P}} \mathbb{E}(-\xi(F_t(X), Y) - f(X))^2$$

- $\mathscr{P} =$ functions $f : \mathscr{X} \to \mathbb{R}$ such that $f \in \mathscr{P} \Leftrightarrow -f \in \mathscr{P}$, and $af \in \mathscr{P}$ for all $(a, f) \in \mathbb{R} \times \mathscr{P}$.
- Example: all trees in \mathbb{R}^d with k terminal nodes.
- Key idea: replace

$$f_{t+1} \in \arg \max_{f \in \mathscr{F}} - \mathbb{E}\xi(F_t(X), Y)f(X)$$

by

$$f_{t+1} \in \operatorname{arg\,min}_{f \in \mathscr{P}} \mathbb{E}(-\xi(F_t(X), Y) - f(X))^2.$$

• Equivalently,

$$f_{t+1} \in \operatorname{arg\,min}_{f \in \mathscr{P}} (2\mathbb{E}\xi(F_t(X), Y)f(X) + \|f\|_{\mu_X}^2).$$

- 1: **Require** ν a positive real number.
- 2: Set t = 0 and start with $F_0 \in \mathscr{P}$.
- 3: Compute

 $f_{t+1} \in \arg\min_{f \in \mathscr{P}} \left(2\mathbb{E}\xi(F_t(X), Y)f(X) + \|f\|_{\mu_X}^2 \right)$

and let $F_{t+1} = F_t + \nu f_{t+1}$.

4: **Take** $t \leftarrow t + 1$ and **go** to step 3.

• The step size ν is kept fixed during the iterations.

- The step size ν is kept fixed during the iterations.
- Empirical setting with ψ continuously differentiable:

$$f_{t+1} \in \arg\min_{f \in \mathscr{P}} \frac{1}{n} \sum_{i=1}^{n} (-\nabla C(F_t)(X_i) - f(X_i))^2.$$

- The step size ν is kept fixed during the iterations.
- Empirical setting with ψ continuously differentiable:

$$f_{t+1} \in \arg\min_{f \in \mathscr{P}} \frac{1}{n} \sum_{i=1}^{n} (-\nabla C(F_t)(X_i) - f(X_i))^2.$$

• f_{t+1} is fitted to the negative gradient instances $-\nabla C(F_t)(X_i)$.

- The step size ν is kept fixed during the iterations.
- Empirical setting with ψ continuously differentiable:

$$f_{t+1} \in \operatorname{arg\,min}_{f \in \mathscr{P}} \frac{1}{n} \sum_{i=1}^{n} (-\nabla C(F_t)(X_i) - f(X_i))^2.$$

- f_{t+1} is fitted to the negative gradient instances $-\nabla C(F_t)(X_i)$.
- Example: when $\psi(x, y) = (y x)^2/2$, then

$$-\nabla C(F_t)(X_i) = Y_i - F_t(X_i).$$

- The step size ν is kept fixed during the iterations.
- Empirical setting with ψ continuously differentiable:

$$f_{t+1} \in \operatorname{arg\,min}_{f \in \mathscr{P}} \frac{1}{n} \sum_{i=1}^{n} (-\nabla C(F_t)(X_i) - f(X_i))^2.$$

- f_{t+1} is fitted to the negative gradient instances $-\nabla C(F_t)(X_i)$.
- Example: when $\psi(x, y) = (y x)^2/2$, then

$$-\nabla C(F_t)(X_i) = Y_i - F_t(X_i).$$

• This is at the origin of gradient boosting.

Convergence

Step sizes: we take $w_0 > 0$ arbitrarily and set

$$w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}\xi(F_t(X), Y)f_{t+1}(X)), \quad t \ge 0.$$

Step sizes: we take $w_0 > 0$ arbitrarily and set

$$w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}\xi(F_t(X), Y)f_{t+1}(X)), \quad t \ge 0.$$

Theorem

Assume that Assumptions A_1 and A_3 are satisfied. Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{F})} C(F).$$

Step sizes: we take $w_0 > 0$ arbitrarily and set

$$w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}\xi(F_t(X), Y)f_{t+1}(X)), \quad t \ge 0.$$

Theorem

Assume that Assumptions A_1 and A_3 are satisfied. Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{F})} C(F).$$

 \triangleright The result holds without Assumption **A**₂.

Step sizes: we take $w_0 > 0$ arbitrarily and set

$$w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}\xi(F_t(X), Y)f_{t+1}(X)), \quad t \ge 0.$$

Theorem

Assume that Assumptions A_1 and A_3 are satisfied. Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{F})} C(F).$$

- \triangleright The result holds without Assumption **A**₂.
- \triangleright With A₂, there is a unique boosting predictor $\overline{F} \in \overline{\text{lin}(\mathscr{F})}$ such that

$$C(\bar{F}) = \inf_{F \in \mathsf{lin}(\mathscr{F})} C(F).$$

Step sizes: we take $w_0 > 0$ arbitrarily and set

$$w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}\xi(F_t(X), Y)f_{t+1}(X)), \quad t \ge 0.$$

Theorem

Assume that Assumptions A_1 and A_3 are satisfied. Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{F})} C(F).$$

- \triangleright The result holds without Assumption **A**₂.
- \triangleright With A_2 , there is a unique boosting predictor $\overline{F} \in \overline{\text{lin}(\mathscr{F})}$ such that

$$C(\bar{F}) = \inf_{F \in \mathsf{lin}(\mathscr{F})} C(F).$$

▷ The theorem guarantees that $\lim_{t\to\infty} C(F_t) = C(\overline{F})$.

Mathematical machinery

Lemma

Assume that Assumptions A_1 and A_3 are satisfied. Then

 $C(F_t) - C(F_{t+1}) \geq Lw_{t+1}^2.$

In particular, $\lim_{t\to\infty} C(F_t) = \inf_k C(F_k)$.

Mathematical machinery

Lemma

Assume that Assumptions A_1 and A_3 are satisfied. Then

 $C(F_t) - C(F_{t+1}) \geq Lw_{t+1}^2.$

In particular, $\lim_{t\to\infty} C(F_t) = \inf_k C(F_k)$.

Corollary

Assume that $\overline{\lim(\mathscr{F})} = L^2(\mu_X)$. Assume, in addition, that Assumptions A_1 , A_2 , and A'_3 are satisfied. Then

$$\lim_{t\to\infty}\|F_t-\bar{F}\|_{\mu_X}=0,$$

where

$$\overline{F} = \arg \min_{F \in L^2(\mu_X)} C(F).$$

Theorem

Assume that Assumptions $\textbf{A_{1}-A_{3}}$ are satisfied, with 0 $<\nu<1/(2L).$ Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{P})} C(F).$$

Theorem

Assume that Assumptions $\textbf{A_{1}-A_{3}}$ are satisfied, with 0 $<\nu<1/(2L).$ Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{P})} C(F).$$

 \triangleright The result requires Assumption **A**₂.

Theorem

Assume that Assumptions $\textbf{A_{1}-A_{3}}$ are satisfied, with 0 $<\nu<1/(2L).$ Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{P})} C(F).$$

 \triangleright The result requires Assumption **A**₂.

▷ The theorem guarantees that $\lim_{t\to\infty} C(F_t) = C(\overline{F})$.

Theorem

Assume that Assumptions $\textbf{A_{1}-A_{3}}$ are satisfied, with 0 $<\nu<1/(2L).$ Then

$$\lim_{t\to\infty} C(F_t) = \inf_{F\in \operatorname{lin}(\mathscr{P})} C(F).$$

- \triangleright The result requires Assumption **A**₂.
- ▷ The theorem guarantees that $\lim_{t\to\infty} C(F_t) = C(\overline{F})$.
- \triangleright If $\overline{\operatorname{lin}(\mathscr{P})} = L^2(\mu_X)$ and A'_3 is satisfied, then

$$\lim_{t\to\infty}\|F_t-\bar{F}\|_{\mu_X}=0,$$

where

$$\bar{F} = \operatorname{arg\,min}_{F \in L^2(\mu_X)} C(F).$$

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$$

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$$

over the linear combinations of weak learners.

• This task is achieved by sequentially constructing linear combinations.

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$$

- This task is achieved by sequentially constructing linear combinations.
- F_t and \overline{F}_n are functions of the data set \mathcal{D}_n .

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$$

- This task is achieved by sequentially constructing linear combinations.
- F_t and \overline{F}_n are functions of the data set \mathcal{D}_n .
- So far: no information on the statistical behavior of \bar{F}_n .

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$$

- This task is achieved by sequentially constructing linear combinations.
- F_t and \overline{F}_n are functions of the data set \mathcal{D}_n .
- So far: no information on the statistical behavior of \bar{F}_n .
- Question: probabilistic properties of \overline{F}_n as $n \to \infty$?

• Catastrophic situations can happen \rightarrow "size" of lin(\mathscr{F}) or lin(\mathscr{P}).

Discussion

- Catastrophic situations can happen \rightarrow "size" of lin(\mathscr{F}) or lin(\mathscr{P}).
- Example: $\psi(x, y) = (y x)^2$ and \mathscr{F} = all trees with d + 1 leaves. Then

$$\lim_{t\to\infty} C_n(F_t) = C_n(\bar{F}_n),$$

where

$$\bar{F}_n = \arg\min_{F \in L^2(P_n)} C_n(F).$$

- Catastrophic situations can happen \rightarrow "size" of lin(\mathscr{F}) or lin(\mathscr{P}).
- Example: $\psi(x, y) = (y x)^2$ and \mathscr{F} = all trees with d + 1 leaves. Then

$$\lim_{t\to\infty}C_n(F_t)=C_n(\bar{F}_n),$$

where

$$\bar{F}_n = \arg\min_{F \in L^2(P_n)} C_n(F).$$

• Overfitting: \overline{F}_n reproduces the data.

- Catastrophic situations can happen \rightarrow "size" of lin(\mathscr{F}) or lin(\mathscr{P}).
- Example: $\psi(x, y) = (y x)^2$ and \mathscr{F} = all trees with d + 1 leaves. Then

$$\lim_{t\to\infty} C_n(F_t) = C_n(\bar{F}_n),$$

where

$$\bar{F}_n = \operatorname{arg\,min}_{F \in L^2(P_n)} C_n(F).$$

- Overfitting: \overline{F}_n reproduces the data.
- No chance that \overline{F}_n converges to $F^*(x) = \mathbb{E}(Y|X = x)$.

- Catastrophic situations can happen \rightarrow "size" of lin(\mathscr{F}) or lin(\mathscr{P}).
- Example: $\psi(x, y) = (y x)^2$ and \mathscr{F} = all trees with d + 1 leaves. Then

$$\lim_{t\to\infty}C_n(F_t)=C_n(\bar{F}_n),$$

where

$$\overline{F}_n = \operatorname{arg\,min}_{F \in L^2(P_n)} C_n(F).$$

- Overfitting: \overline{F}_n reproduces the data.
- No chance that \overline{F}_n converges to $F^*(x) = \mathbb{E}(Y|X = x)$.
- Classical solution: early stopping.

• Yes, under appropriate conditions.

- Yes, under appropriate conditions.
- Problem: the minimizations are performed over vector spaces.

- Yes, under appropriate conditions.
- Problem: the minimizations are performed over vector spaces.
- **X** No question of imposing constraints on the coefficients.

- Yes, under appropriate conditions.
- Problem: the minimizations are performed over vector spaces.
- **X** No question of imposing constraints on the coefficients.
- ✓ Solution: carefully constraint the "complexity" of the vector spaces.

- Yes, under appropriate conditions.
- Problem: the minimizations are performed over vector spaces.
- **X** No question of imposing constraints on the coefficients.
- ✓ Solution: carefully constraint the "complexity" of the vector spaces.
- Importance of having a strongly convex risk functional to minimize.

- Yes, under appropriate conditions.
- Problem: the minimizations are performed over vector spaces.
- **X** No question of imposing constraints on the coefficients.
- ✓ Solution: carefully constraint the "complexity" of the vector spaces.
- Importance of having a strongly convex risk functional to minimize.
- ✓ Solution: possible regularization with an L^2 -type penalty.

Large sample properties

• Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

• We concentrate on Algorithm 1.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

- We concentrate on Algorithm 1.
- Weak learners: a finite class \mathscr{F}_n of ± 1 -values simple functions on \mathscr{X} .

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

- We concentrate on Algorithm 1.
- Weak learners: a finite class \mathscr{F}_n of ± 1 -values simple functions on \mathscr{X} .
- Example: a finite class of trees with k leaves.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

- We concentrate on Algorithm 1.
- Weak learners: a finite class \mathscr{F}_n of ± 1 -values simple functions on \mathscr{X} .
- Example: a finite class of trees with k leaves.
- Consequence: any $F \in \text{lin}(\mathscr{F}_n)$ takes the form $F = \sum_{j=1}^N \alpha_j \mathbb{1}_{A_i^n}$.

- Observations: $\mathscr{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ in $\mathscr{X} \times \mathscr{Y} \subset \mathbb{R}^d \times \mathbb{R}$.
- \mathscr{X} is a compact subset of \mathbb{R}^d .
- Each X_i has a density g on \mathscr{X} , with

$$0 < \inf_{\mathscr{X}} g \leq \sup_{\mathscr{X}} g < \infty.$$

- We concentrate on Algorithm 1.
- Weak learners: a finite class \mathscr{F}_n of ± 1 -values simple functions on \mathscr{X} .
- Example: a finite class of trees with k leaves.
- Consequence: any $F \in \text{lin}(\mathscr{F}_n)$ takes the form $F = \sum_{j=1}^N \alpha_j \mathbb{1}_{A_j^n}$.
- Assumption: there exists $(v_n)_n$ such that $\min_{1 \le j \le N} \lambda(A_j^n) \ge v_n$.

Objective

• Objective: minimize over $lin(\mathscr{F}_n)$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i),$$

where $\psi(x, y) = \phi(x, y) + \gamma_n x^2$.

Objective

• Objective: minimize over $lin(\mathscr{F}_n)$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i),$$

where $\psi(x, y) = \phi(x, y) + \gamma_n x^2$.

• Differently:

$$C_n(F) = A_n(F) + \gamma_n \|F\|_{P_n}^2,$$

where

$$A_n(F) = \frac{1}{n} \sum_{i=1}^n \phi(F(X_i), Y_i).$$

Objective

• Objective: minimize over $lin(\mathscr{F}_n)$ the empirical risk functional

$$C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i),$$

where $\psi(x, y) = \phi(x, y) + \gamma_n x^2$.

• Differently:

$$C_n(F) = A_n(F) + \gamma_n \|F\|_{P_n}^2,$$

where

$$A_n(F) = \frac{1}{n} \sum_{i=1}^n \phi(F(X_i), Y_i).$$

• The strong convexity Assumption A_2 is satisfied.

• Boosting predictor: $\overline{F}_n = \arg \min_{F \in \operatorname{lin}(\mathscr{F}_n)} C_n(F)$.

- Boosting predictor: $\overline{F}_n = \arg \min_{F \in \text{lin}(\mathscr{F}_n)} C_n(F)$.
- Whenever Assumption A_3 is satisfied, $\lim_{t\to\infty} C_n(F_t) = C_n(\overline{F}_n)$.

- Boosting predictor: $\overline{F}_n = \arg \min_{F \in \text{lin}(\mathscr{F}_n)} C_n(F)$.
- Whenever Assumption A_3 is satisfied, $\lim_{t\to\infty} C_n(F_t) = C_n(\overline{F}_n)$.
- Objective: prove that $\lim_{n\to\infty} A(\bar{F}_n) = A(F^*)$, where

 $A(F) = \mathbb{E}\phi(F(X_1), Y_1)$ and $F^* \in \arg\min_{F \in L^2(P)} A(F)$.

- Boosting predictor: $\overline{F}_n = \arg \min_{F \in \text{lin}(\mathscr{F}_n)} C_n(F)$.
- Whenever Assumption A_3 is satisfied, $\lim_{t\to\infty} C_n(F_t) = C_n(\overline{F}_n)$.
- Objective: prove that $\lim_{n\to\infty} A(\bar{F}_n) = A(F^*)$, where

 $A(F) = \mathbb{E}\phi(F(X_1), Y_1)$ and $F^* \in \operatorname{arg\,min}_{F \in L^2(P)}A(F)$.

• Example 1: $F^*(x) = \mathbb{E}(Y|X = x)$ with $\phi(x, y) = (y - x)^2$.

- Boosting predictor: $\overline{F}_n = \arg \min_{F \in \text{lin}(\mathscr{F}_n)} C_n(F)$.
- Whenever Assumption A_3 is satisfied, $\lim_{t\to\infty} C_n(F_t) = C_n(\overline{F}_n)$.
- Objective: prove that $\lim_{n\to\infty} A(\bar{F}_n) = A(F^*)$, where

 $A(F) = \mathbb{E}\phi(F(X_1), Y_1)$ and $F^* \in \operatorname{arg\,min}_{F \in L^2(P)}A(F)$.

- Example 1: $F^*(x) = \mathbb{E}(Y|X = x)$ with $\phi(x, y) = (y x)^2$.
- Example 2: $F^*(x) = \log(\frac{\eta(x)}{1-\eta(x)})$ with $\phi(x, y) = \log_2(1+e^{-yx})$.

- Boosting predictor: $\overline{F}_n = \arg \min_{F \in \text{lin}(\mathscr{F}_n)} C_n(F)$.
- Whenever Assumption A_3 is satisfied, $\lim_{t\to\infty} C_n(F_t) = C_n(\overline{F}_n)$.
- Objective: prove that $\lim_{n\to\infty} A(\bar{F}_n) = A(F^*)$, where

 $A(F) = \mathbb{E}\phi(F(X_1), Y_1)$ and $F^* \in \arg\min_{F \in L^2(P)} A(F)$.

- Example 1: $F^*(x) = \mathbb{E}(Y|X = x)$ with $\phi(x, y) = (y x)^2$.
- Example 2: $F^*(x) = \log(\frac{\eta(x)}{1-\eta(x)})$ with $\phi(x, y) = \log_2(1 + e^{-yx})$.
- What we know so far:

$$A_{n}(\bar{F}_{n}) + \gamma_{n} \|\bar{F}_{n}\|_{P_{n}}^{2} - A(F^{*}) = \inf_{F \in \text{lin}(\mathscr{F}_{n})} \left(A_{n}(F) + \gamma_{n} \|F\|_{P_{n}}^{2} - A(F^{*}) \right)$$

Main result

Assumption A₄

For all $p \ge 0$, there exists a constant $\zeta(p) > 0$ such that, for all $(x_1, x_2, y) \in \mathbb{R}^2 \times \mathscr{Y}$ with $\max(|x_1|, |x_2|) \le p$,

 $|\phi(x_1, y) - \phi(x_2, y)| \le \zeta(p)|x_1 - x_2|.$

Main result

Assumption A₄

For all $p \ge 0$, there exists a constant $\zeta(p) > 0$ such that, for all $(x_1, x_2, y) \in \mathbb{R}^2 \times \mathscr{Y}$ with $\max(|x_1|, |x_2|) \le p$,

$$|\phi(x_1, y) - \phi(x_2, y)| \le \zeta(p)|x_1 - x_2|.$$

Theorem

Assume that Assumptions \mathbf{A}_3 and \mathbf{A}_4 are satisfied, and that F^* is bounded. Assume, in addition, that $\operatorname{diam}(A^n(X)) \to 0$ in probability as $n \to \infty$. Then, provided $\gamma_n \to 0$, $N \to \infty$, $\frac{\log N}{nv_n} \to 0$, and

$$\frac{1}{\sqrt{nv_n\gamma_n}}\zeta\left(\sqrt{\frac{2\bar{\phi}}{v_n\gamma_n\inf_{\mathscr{X}}g}}\right)\to 0,$$

we have $\lim_{n\to\infty} \mathbb{E}A(\bar{F}_n) = A(F^*)$.

• Gradient boosting does not always overfit.

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark
- Example:

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark
- Example:

 $\triangleright \ \mathscr{X} = [0,1]^d;$

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark
- Example:

$$\triangleright \ \mathscr{X} = [0,1]^d;$$

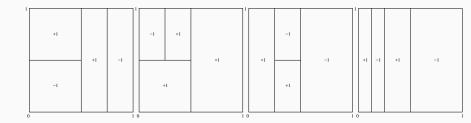
 $\triangleright \mathscr{F}_n = \text{all trees on } [0,1]^d \text{ with } k_n \text{ leaves;}$

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark
- Example:
 - $\triangleright \ \mathscr{X} = [0,1]^d;$
 - $\triangleright \mathscr{F}_n = \text{all trees on } [0,1]^d \text{ with } k_n \text{ leaves;}$
 - ▷ Cuts are orthogonal and located at the middle of the cells;

- Gradient boosting does not always overfit.
- If the function $\phi(\cdot, y)$ is already α -strongly convex: \checkmark
- Example:

$$\triangleright \ \mathscr{X} = [0,1]^d;$$

- $\triangleright \mathscr{F}_n = \text{all trees on } [0,1]^d \text{ with } k_n \text{ leaves;}$
- ▷ Cuts are orthogonal and located at the middle of the cells;
- ▷ Although combinatorially rich, this family of trees is finite.



- Any $F \in \text{lin}(\mathscr{F}_n)$ takes the form $F = \sum_{j=1}^{N} \alpha_j \mathbb{1}_{A_i^n}$.
- $N \leq 2^{dk_n}$ and the A_i^n form a regular grid over $[0,1]^d$.

- Any $F \in \text{lin}(\mathscr{F}_n)$ takes the form $F = \sum_{j=1}^{N} \alpha_j \mathbb{1}_{A_i^n}$.
- $N \leq 2^{dk_n}$ and the A_i^n form a regular grid over $[0, 1]^d$.
- Also, $v_n \geq 2^{-dk_n}$.

- Any $F \in \lim(\mathscr{F}_n)$ takes the form $F = \sum_{j=1}^{N} \alpha_j \mathbb{1}_{A_j^n}$.
- $N \leq 2^{dk_n}$ and the A_j^n form a regular grid over $[0,1]^d$.
- Also, $v_n \geq 2^{-dk_n}$.
- With $\phi(x,y) = (y-x)^2$, the conditions of the theorem read

$$k_n o \infty, \quad rac{k_n 2^{dk_n}}{n} o 0, \quad ext{and} \quad rac{2^{dk_n}}{\sqrt{n}} o 0.$$

$$g_F(x) = \begin{cases} +1 & \text{if } F(x) > 0 \\ -1 & \text{otherwise.} \end{cases}$$

$$g_F(x) = \left\{ egin{array}{cc} +1 & ext{if } F(x) > 0 \ -1 & ext{otherwise.} \end{array}
ight.$$

• Proximity between $L(g_F) = \mathbb{P}(g_F(X) \neq Y)$ and the Bayes risk L^* .

$$g_F(x) = \left\{ egin{array}{cc} +1 & ext{if } F(x) > 0 \ -1 & ext{otherwise.} \end{array}
ight.$$

- Proximity between $L(g_F) = \mathbb{P}(g_F(X) \neq Y)$ and the Bayes risk L^* .
- Most often: $L(g_F) L^*$ is small as long as $A(F) A(F^*)$ is.

$$g_F(x) = \left\{ egin{array}{cc} +1 & ext{if } F(x) > 0 \ -1 & ext{otherwise.} \end{array}
ight.$$

- Proximity between $L(g_F) = \mathbb{P}(g_F(X) \neq Y)$ and the Bayes risk L^* .
- Most often: $L(g_F) L^*$ is small as long as $A(F) A(F^*)$ is.
- References: Zhang (2004), Bartlett et al. (2006).

$$g_F(x) = \left\{ egin{array}{cc} +1 & ext{if } F(x) > 0 \ -1 & ext{otherwise.} \end{array}
ight.$$

- Proximity between $L(g_F) = \mathbb{P}(g_F(X) \neq Y)$ and the Bayes risk L^* .
- Most often: $L(g_F) L^*$ is small as long as $A(F) A(F^*)$ is.
- References: Zhang (2004), Bartlett et al. (2006).
- For such well-behaved losses,

$$\lim_{n\to\infty}\mathbb{E}L(g_{\bar{F}_n})=L^*.$$

Boosting gradient boosting

• Gradient boosting is a first-order optimization procedure.

- Gradient boosting is a first-order optimization procedure.
- Large-scale machine learning has promoted accelerated first-order schemes.

- Gradient boosting is a first-order optimization procedure.
- Large-scale machine learning has promoted accelerated first-order schemes.
- Nesterov's accelerated gradient descent (1983): $x_0 = y_0$, and

$$\begin{aligned} x_{t+1} &= y_t - w \nabla f(y_t) \\ y_{t+1} &= (1 - \gamma_t) x_{t+1} + \gamma_t x_t, \end{aligned}$$

where

$$\lambda_0 = 0, \quad \lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}, \quad \text{and} \quad \gamma_t = \frac{1 - \lambda_t}{\lambda_{t+1}}.$$

- Gradient boosting is a first-order optimization procedure.
- Large-scale machine learning has promoted accelerated first-order schemes.
- Nesterov's accelerated gradient descent (1983): $x_0 = y_0$, and

$$\begin{aligned} x_{t+1} &= y_t - w \nabla f(y_t) \\ y_{t+1} &= (1 - \gamma_t) x_{t+1} + \gamma_t x_t, \end{aligned}$$

where

$$\lambda_0 = 0, \quad \lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}, \quad \text{and} \quad \gamma_t = \frac{1 - \lambda_t}{\lambda_{t+1}}.$$

• An optimal method for smooth convex optimization: rate $O(1/t^2)$.

- Gradient boosting is a first-order optimization procedure.
- Large-scale machine learning has promoted accelerated first-order schemes.
- Nesterov's accelerated gradient descent (1983): $x_0 = y_0$, and

$$\begin{aligned} x_{t+1} &= y_t - w \nabla f(y_t) \\ y_{t+1} &= (1 - \gamma_t) x_{t+1} + \gamma_t x_t; \end{aligned}$$

where

$$\lambda_0 = 0, \quad \lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}, \quad \text{and} \quad \gamma_t = \frac{1 - \lambda_t}{\lambda_{t+1}}.$$

- An optimal method for smooth convex optimization: rate $O(1/t^2)$.
- Applications in sparse linear regression, compressed sensing, distributed gradient descent, deep and recurrent neural networks, etc.

- Gradient boosting is a first-order optimization procedure.
- Large-scale machine learning has promoted accelerated first-order schemes.
- Nesterov's accelerated gradient descent (1983): $x_0 = y_0$, and

$$\begin{aligned} x_{t+1} &= y_t - w \nabla f(y_t) \\ y_{t+1} &= (1 - \gamma_t) x_{t+1} + \gamma_t x_t; \end{aligned}$$

where

$$\lambda_0 = 0, \quad \lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}, \quad \text{and} \quad \gamma_t = \frac{1 - \lambda_t}{\lambda_{t+1}}.$$

- An optimal method for smooth convex optimization: rate $O(1/t^2)$.
- Applications in sparse linear regression, compressed sensing, distributed gradient descent, deep and recurrent neural networks, etc.
- Idea: combine gradient tree boosting and Nesterov's mechanism.

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

3: Fit a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.

4: For
$$j = 1, ..., k$$
, **compute**

$$w_{j,t+1} \in \operatorname{arg\,min}_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

5: Update

(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}$$
.

(b)
$$G_{t+1} = (1 - \gamma_t)F_{t+1} + \gamma_t F_t.$$

- 6: end for
- 7: **Output** F_T .

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

3: Fit a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.

4: For
$$j = 1, ..., k$$
, **compute**

$$w_{j,t+1} \in \operatorname{arg\,min}_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

5: Update

(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}.$$

(b) $G_{t+1} = (1 - \gamma_t) F_{t+1} + \gamma_t F_t.$

6: **end for**

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

3: **Fit** a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.

4: For
$$j = 1, ..., k$$
, **compute**

$$w_{j,t+1} \in \arg\min_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

5: Update

(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}$$
.
(b) $G_{t+1} = (1 - \gamma_t) F_{t+1} + \gamma_t F_t$.

6: **end for**

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

3: Fit a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.

4: For
$$j = 1, ..., k$$
, compute

$$w_{j,t+1} \in \operatorname{arg\,min}_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

5: Update

(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}.$$

(b) $G_{t+1} = (1 - \gamma_t) F_{t+1} + \gamma_t F_t.$

6: **end for**

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

- 3: Fit a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.
- 4: For j = 1, ..., k, **compute**

$$w_{j,t+1} \in \operatorname{arg\,min}_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

5: Update

(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}.$$

(b) $G_{t+1} = (1 - \gamma_t) F_{t+1} + \gamma_t F_t.$

6: end for

- 1: for t = 0 to (T 1) do
- 2: For i = 1, ..., n, **compute** the negative gradient instances

$$Z_{i,t+1} = -\nabla C_n(G_t)(X_i).$$

3: Fit a regression tree to the pairs $(X_i, Z_{i,t+1})$, giving terminal nodes $R_{j,t+1}$, $1 \le j \le k$.

4: For
$$j = 1, ..., k$$
, **compute**

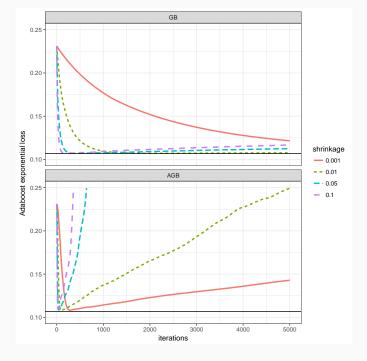
$$w_{j,t+1} \in \operatorname{arg\,min}_{w>0} \sum_{X_i \in R_{j,t+1}} \psi(G_t(X_i) + w, Y_i).$$

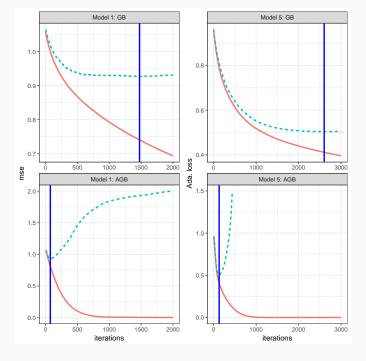
5: Update

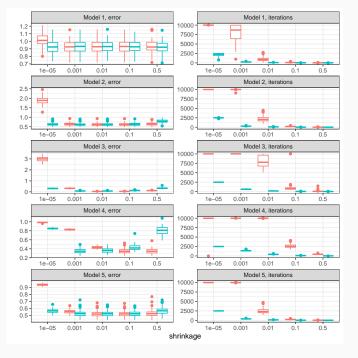
(a)
$$F_{t+1} = G_t + \nu \sum_{j=1}^k w_{j,t+1} \mathbb{1}_{R_{j,t+1}}$$

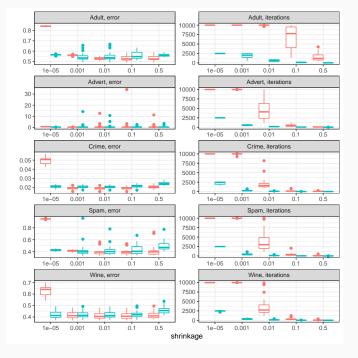
(b)
$$G_{t+1} = (1 - \gamma_t)F_{t+1} + \gamma_t F_t.$$

6: end for









- AGB retains the excellent performance of gradient boosting.
- It is less sensitive to the shrinkage parameter.
- It outputs sparse predictors.
- A decisive advantage in large-scale learning.
- More at github.com/lrouviere/AGB.