Bayesian Calibration using Gaussian Surrogate Model of the Likelihood Function: Application to Train Suspensions Monitoring

David Lebel^{1,2}, Christian Soize¹, Christine Fünfschilling², Guillaume Perrin³ ¹Laboratoire MSME - Université Paris-Est, ²SNCF Innovation & Recherche, ³CEA DAM

Problematic

- Development of a Bayesian calibration method for a system with functional stochastic input and output when the likelihood function is expensive to compute;
- Procedure relying on the construction of a Gaussian surrogate model (see [3]) to address computational costs;
- Surrogate modeling of the likelihood function itself rather than the functional system output.

Industrial case: Train suspensions monitoring

Goal: Determine the state of the suspensions from joint measurements of the **track geometric irregularities** (see [2]) and of the **train dynamic response** (using embedded accelerometers).

MSME

Classical Bayesian calibration

 \blacktriangleright Equation of the system associating output ${\bf Y}$ to parameters ${\bf W}$: ${\bf Y}={\bf H}({\bf W})$

Objective: Update the distribution of W from a measurement y^{mes} of Y using Bayes law:

 $p_{\mathbf{W}}^{\text{post}}(\mathbf{w}) = p_{\mathbf{W} | \mathbf{Y}}(\mathbf{w} | \mathbf{y}^{\text{mes}})$ $\propto p_{\mathbf{Y} | \mathbf{W}}(\mathbf{y}^{\text{mes}} | \mathbf{w}) \cdot p_{\mathbf{W}}^{\text{prior}}(\mathbf{w})$ $\downarrow \text{Likelihood } \mathcal{L}(\mathbf{w})$

▶ Distribution $p_{\mathbf{W}}^{\text{post}}$ estimated with a MCMC algorithm (see [1]).

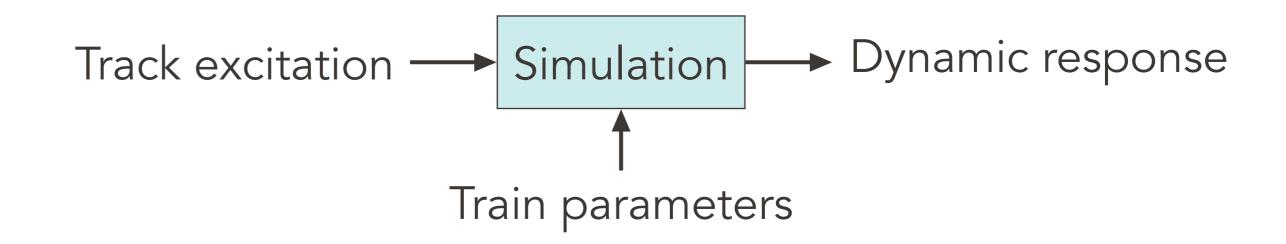


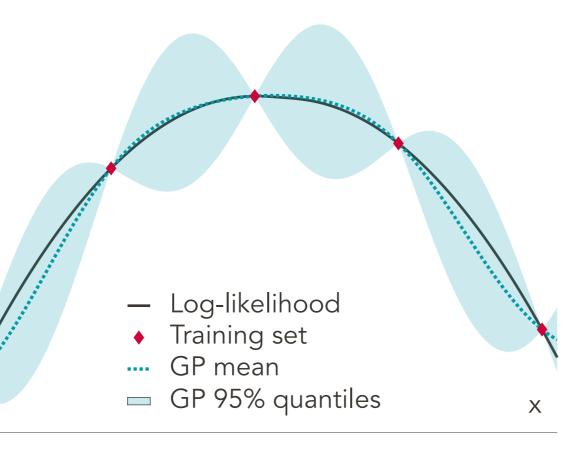
Figure 1: Diagram of the train dynamics system

Specificities of the studied case:
Simulation-based model of the physical system;
Simultaneous calibration of multiple parameters;
Calibration with joint input-output measurements;
Large quantity of available data.

Gaussian surrogate model

Likelihood function \mathcal{L} expensive to compute:

→ Approximation by a Gaussian surrogate model $L(.;\Theta)$ of the log-likelihood;



Trajectory approximation

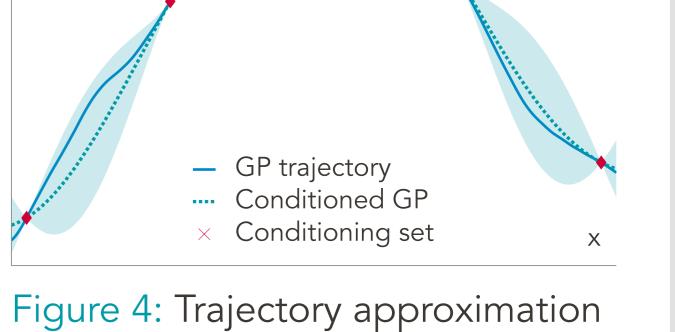
Computation of the Gaussian process ^y trajectories ?

 \rightarrow Approximation of a trajectory by further conditioning the Gaussian surrogate model on a set \mathcal{W} :

→ Straightforward solution: use the predictor provided by the mean function $E_{\Theta}\{L(.;\Theta)\}$.

Figure 2: Gaussian surrogate model of the log-likelihood

 $\widetilde{L}(.;\theta): \mathbf{w} \mapsto$ = $E_{\Theta} \{ L(\mathbf{w}; \Theta) \mid L(\mathcal{W}; \Theta) = L(\mathcal{W}; \theta) \}$



using the surrogate model

Surrogate model uncertainty

Influence of the surrogate model uncertainty on the estimated calibration accuracy ?

 $p_{\mathbf{W}|\mathbf{Y}} = E_{\Theta}\{p_{\mathbf{W}|\mathbf{Y},\Theta}\}$

→ Monte Carlo sampling of trajectories of the surrogate model;

→ MCMC on the trajectories.

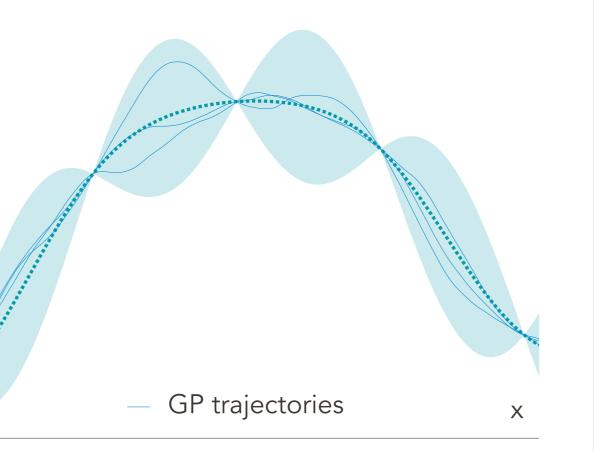


Figure 3: Example of trajectories of the Gaussian surrogate model

Choice of the conditioning set ${\mathcal W}$

Purpose: reduce as much as possible the variance of the surrogate model around the likelihood maximum.

 \rightarrow Conditioning set $\mathcal W$ space-filling in the following set

 $\{\mathbf{w} \mid P(L(\mathbf{w};\Theta) > L(\mathbf{w}^{\max};\Theta)) \ge \rho\}$

with $\mathbf{w}^{\max} = \underset{\mathbf{w}}{\operatorname{arg\,max}} E_{\Theta}\{L(\mathbf{w}; \Theta)\}.$

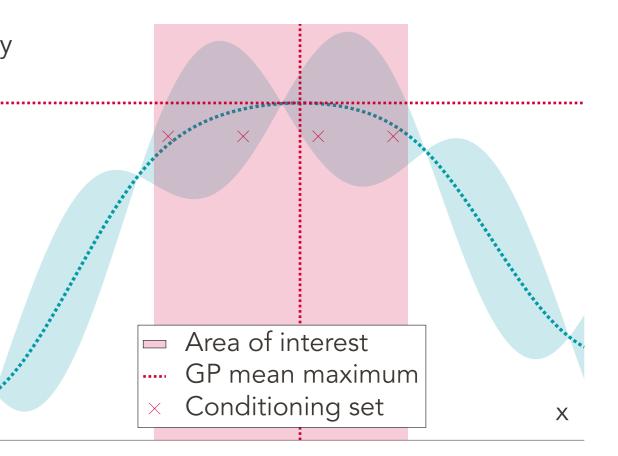
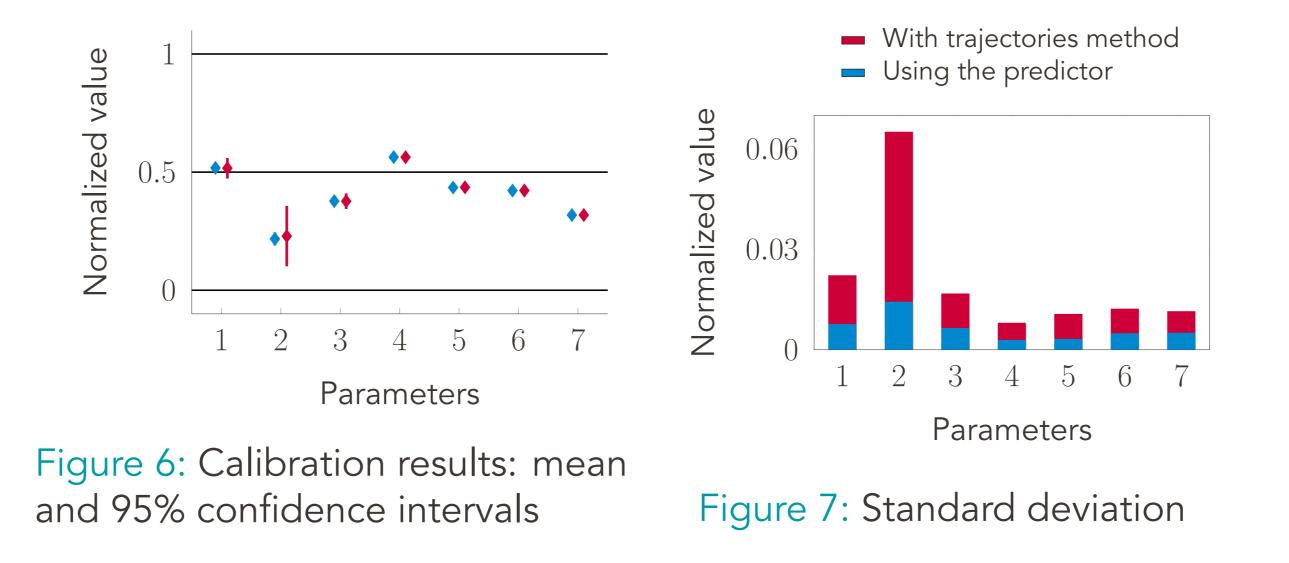


Figure 5: Definition of the conditioning set

Results on the railway case

- Validation of the proposed method on a numerical experiment;
- Visible evolution of the parameters from the nominal values when using actual measurements (Fig. 6);
- Significant influence of the trajectories method on the size of confidence intervals (Fig. 7).



References

 W. Betz, I. Papaioannou, and D. Straub. Transitional Markov Chain Monte Carlo: Observations and Improvements. Journal of Engineering Mechanics, 142(5):04016016, 2016.

[2] N. Lestoille, C. Soize, and C. Funfschilling.

Sensitivity of train stochastic dynamics to long-time evolution of track irregularities. Vehicle System Dynamics, 54(5):545–567, 2016.

[3] T. Santner, B. Williams, and W. Notz.

The Design and Analysis of Computer Experiments.

Springer-Verlag, Berlin, New York, 2003.

Mascot-Num 2018

