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Problematic

IDevelopment of a Bayesian calibration method for a system with
functional stochastic input and output when the likelihood func-
tion is expensive to compute;

IProcedure relying on the construction of a Gaussian surrogate
model (see [3]) to address computational costs;

ISurrogate modeling of the likelihood function itself rather than
the functional system output.

Classical Bayesian calibration

IEquation of the system associating output Y to parameters W:

Y = H(W)

IObjective: Update the distribution of W from a measurement
ymes of Y using Bayes law:

ppost
W (w) = pW |Y(w |ymes)

∝ pY |W(ymes |w) · pprior
W (w)�

Likelihood L(w)

IDistribution ppost
W estimated with a MCMC algorithm (see [1]).

Industrial case: Train suspensions monitoring

Goal: Determine the state of the suspensions from joint measure-
ments of the track geometric irregularities (see [2]) and of the train
dynamic response (using embedded accelerometers).
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Figure 1: Diagram of the train dynamics system

Specificities of the studied case:
ISimulation-based model of the physical system;
ISimultaneous calibration of multiple parameters;
ICalibration with joint input-output measurements;
I Large quantity of available data.

Gaussian surrogate model

Likelihood function L expensive
to compute:

Ô Approximation by a Gaus-
sian surrogate model L(.; Θ) of
the log-likelihood;

Ô Straightforward solution: use
the predictor provided by the
mean function EΘ{L(.; Θ)}.
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Figure 2: Gaussian surrogate
model of the log-likelihood

Surrogate model uncertainty

Influence of the surrogate
model uncertainty on the
estimated calibration accuracy ?

pW |Y = EΘ{pW |Y,Θ}

Ô Monte Carlo sampling of
trajectories of the surrogate
model;

Ô MCMC on the trajectories.
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Figure 3: Example of trajectories of
the Gaussian surrogate model

Trajectory approximation

Computation of the Gaussian process
trajectories ?

Ô Approximation of a trajectory by fur-
ther conditioning the Gaussian surro-
gate model on a set W:

L̃(.; θ) : w 7→
= EΘ {L(w; Θ) |L(W ; Θ) = L(W ; θ)}

x

y

GP trajectory
Conditioned GP
Conditioning set

Figure 4: Trajectory approximation
using the surrogate model

Choice of the conditioning set W

Purpose: reduce as much as possible
the variance of the surrogate model
around the likelihood maximum.

Ô Conditioning set W space-filling in
the following set

{w |P (L(w; Θ) > L(wmax; Θ)) ≥ ρ}

with wmax = arg max
w

EΘ{L(w; Θ)}.
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Figure 5: Definition of the
conditioning set

Results on the railway case

IValidation of the proposed method on
a numerical experiment;

IVisible evolution of the parameters
from the nominal values when using ac-
tual measurements (Fig. 6);

ISignificant influence of the trajectories
method on the size of confidence inter-
vals (Fig. 7).
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Figure 6: Calibration results: mean
and 95% confidence intervals
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Figure 7: Standard deviation
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