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Statistical learning for uncertainty quantification in high dimension

Uncertainty quantification
Let X = (X1, . . . , Xd) be a set of d random variables modeling the (computational of
experimental) uncertainties in a model f , and let Y be a quantify of interest:

Y = f(X) .

Two types of problem: forward and inverse.

Model order reduction for the uncertainty quantification
Uncertainty quantification requires the evaluation of the model f for many instances of
X . When evaluating the model is costly (computationally or experimentally), we rely on
approximations f̃ of f that are cheap to evaluate.
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Statistical learning for uncertainty quantification in high dimension

Statistical learning
To compute f̃ , minimize the empirical risk on a training sample

{
(xk, yk)

}N
k=1

, where
yk = f(xk):

min
f̃∈V

1

N

N∑
k=1

ℓ(yk, f̃(xk))

where V is an approximation set, and with ℓ a loss function, e.g. the square loss function:

ℓ(f(xk), f̃(xk)) =
∣∣∣f(xk)− f̃(xk)

∣∣∣2 .
High-dimensional approximation
When the dimension d of X is high, the approximation f̃(X) is sought in sets of
functions that are described by a number of parameters growing moderately with d.
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Outline

Tree-based tensor (TBT) formats

Statistical learning in tree-based tensor format

Tree-based tensor learning combined with changes of variables
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Tree-based tensor (TBT) formats



Notions of rank

A multivariate function v(x1, . . . , xd) can be identified with an order-d tensor.

• A function with rank one:
v(x) = v1(x1) . . . vd(xd),

• a function with (canonical) rank r:

v(x) =

r∑
i=1

vi1(x1) . . . v
i
d(xd),

• a function with α-rank rankα(v) = rα:

v(x) =

rα∑
i=1

viα(xα)v
i
αc(xαc),

with xα and xαc complementary groups of variables.
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Tree-based tensor formats

• For T ⊂ 2{1,...,d}, a function with T -rank r = (rα)α∈T :

v(x) =

rα∑
i=1

viα(xα)v
i
αc(xαc), ∀α ∈ T

When T is a dimension partition tree, v has a tree-based tensor (TBT) format.

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train Tucker

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker
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Tree-based tensor formats

A function in tree-based tensor format admits a parametrization with functions
associated to each node α that are multilinear in groups of variables.

Example: hierarchical tucker tensor with d = 5:

v(x) = f1,2,3,4,5(f1,2,3(f1(x1), f2,3(f2(x2), f3(x3))), f4,5(f4(x4), f5(x5)))

where for the leaves, 1 ≤ ν ≤ d,

fν : X ν → Rrν ,

and e.g. for a node α with children β1 and β2,

fα : Rrβ1 × Rrβ2 → Rrα

is a bilinear function identified with a tensor in
Rrα×rβ1

×rβ2 .

f1,2,3,4,5

f1,2,3

f1

f2,3

f2 f3

f4,5

f4 f5

Hierarchical Tucker

Particular case of deep networks: see [Cohen, Sharir, and Shashua, 2015] [Khrulkov,
Novikov, and Oseledets, 2017].
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Tree-based tensor formats

Properties of T T
r = {u : rankα(u) ≤ rα, α ∈ T}

• The storage complexity of v ∈ T T
r scales as O

(
dRs+1

)
, with R = max

α∈T
rα and s the

arity of the tree,
• T T

r is a closed set: best approximation problems are well posed and stable
algorithms exist,

• an element v of T T
r is linear in each of its parameters fα, enabling the use of the

classical machinery of linear approximation in an alternating minimization algorithm,
• a higher-order singular value decomposition (HOSVD) of v ∈ T T

r can be
computed [Lathauwer, Moor, and Vandewalle, 2000].
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tensor format



Statistical learning in tree-based tensor format

The minimization problem

min
v∈T T

r

1

N

N∑
k=1

ℓ
(
yk, v(xk)

)
is solved using an alternating minimization algorithm.

Thanks to the linearity of v, each problem to solve is linear:

min
aα∈Rmα

1

N

N∑
k=1

ℓ
(
yk,Ψα(x

k)Taα
)
,

with Ψα(x) such that v(x) = Ψα(x)
Taα, and with mα =

{
rνnα if α is a leaf,
rαrβ1

· · · rβsα
otherwise.

For a leaf node ν ∈ T , we compute a sparse approximation by using a working-set
strategy. A cross validation estimator of the error is used to choose the optimal set.
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Statistical learning in tree-based tensor format

Adaptation of the tree-based ranks

• Start with a tree-based rank r0 = (0, . . . , 0),
• at iteration m, given vm ∈ T T

rm , select a subset of nodes to enrich Tm ⊆ T , and define
rm+1 =

(
rm+1
α

)
α∈T

by

rm+1
α =

{
rmα + 1 if α ∈ Tm,

rmα if α /∈ Tm,

• to find Tm, compute a rank-one correction w of vm and determine the smallest
α-singular value σα, for each node α ∈ T , of vm + w. Then,

Tm =

{
α ∈ T : σα ≥ θmax

β∈T
σβ

}
,

where θ ∈ [0, 1]. In the next numerical experiments, θ is set to 0.8.
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Numerical experiment—function with effective dimension 2

• Approximation in tree-based tensor format of the function f of X = (X1, . . . , X5),
such that Xi ∼ U(−1, 1):

f(X) =
1

(10 +X1 + 0.5X2)2
,

• approximation spaces of the leaves: Legendre polynomial basis of maximal degree 5,
• adaptation of the rank,
• 4 sample sizes: N = 50, 100, 1000 and 10000,
• 3 dimension trees.
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Numerical experiment—function with effective dimension 2

Format N Test error r

TTT

50 [0.04, 1.46] · 10−5 1, 1, 1, 1, 1, 1, 1, 4, 4

100 [0.22, 2.56] · 10−6 1, 1, 1, 1, 1, 1, 1, 4, 4

1000 [1.45, 1.55] · 10−7 1, 1, 1, 1, 1, 1, 1, 3, 3

10 000 [1.42, 1.46] · 10−7 1, 1, 1, 1, 1, 1, 1, 4, 4

Tree 1

50 [0.04, 1.80] · 10−5 1, 1, 1, 1, 1, 4, 4, 1, 1

100 [0.21, 8.66] · 10−6 1, 1, 1, 1, 1, 4, 4, 1, 1

1000 [1.45, 1.58] · 10−7 1, 1, 1, 1, 1, 3, 3, 1, 1

10 000 [1.42, 1.46] · 10−7 1, 1, 1, 1, 1, 4, 4, 1, 1

Tree 2

50 [0.07, 1.69] · 10−5 1, 3, 3, 3, 1, 3, 1, 3, 1

100 [0.23, 3.60] · 10−6 1, 3, 3, 3, 1, 3, 1, 3, 1

1000 [1.45, 1.63] · 10−7 1, 3, 3, 3, 1, 3, 1, 3, 1

10 000 [1.42, 1.46] · 10−7 1, 3, 3, 3, 1, 3, 1, 3, 1

1

2

4

6

{1}
8

{2}
9

{3}
7

{4}
5

{5}
3

Tensor-Train Tucker (TTT)
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Numerical experiment—function with effective dimension 2
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Numerical experiment—peaked function

• Approximation in tree-based tensor format of the function f of X = (X1, . . . , X10),
such that Xi ∼ U(0, 1):

f(X) =

(
1 +

d∑
i=1

aixi

)−2

with 0 ≤ ai ≤ 1 randomly chosen,
• approximation spaces of the leaves: Legendre polynomial basis of maximal degree
20,

• adaptation of the rank,
• 3 sample sizes: N = 100, 1000 and 10000,
• 2 dimension trees: Tensor Train Tucker and Balanced Tree.
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Numerical experiment—peaked function

Format N Test error max
α∈T

rα Storage complexity

TTT
100 [0.04, 1.94] · 10−2 2 425.50

1000 [0.00, 1.52] · 10−2 3 795

10 000 [0.03, 5.27] · 10−5 3.50 817

Balanced tree
100 [0.07, 2.07] · 10−2 2 305.50

1000 [0.00, 1.43] · 10−2 4 1019

10 000 [0.06, 4.68] · 10−5 4 1055
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Numerical experiment—peaked function—HTT
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Tree-based tensor learning
combined with changes of
variables



Tree-based tensor learning combined with changes of variables

Aim
Combine the tree-based tensor learning with changes of variables, by computing a
composition of functions:

f(x) ≈ h(g(x)) = h(g1(x), . . . , gm(x)),

where h ∈ T T
r with T ⊂ 2{1,...,m}, g : Rd → Rm and gi : Rd → R, i = 1, . . . ,m.

Outline of the algorithm

• Sequential construction of tree-based formats with increasing m,
each time adding a new variable zi = gi(x),

• for each m, computation of the approximation by alternatively
optimizing on

• h, using the method previously introduced,
• the gi, i = 1, . . . ,m, using a Gauss-Newton algorithm.

1

{1}
2

{2}
3
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Numerical experiments—function with effective dimension 2

• Approximation of the previously used function with effective dimension 2, with
X = (X1, . . . , X5),

f(X) =
1

(10 +X1 + 0.5X2)2
,

• number of new variables m fixed to 2,
• approximation basis for gi, i = 1, 2: multidimensional Legendre polynomial basis of
total degree exactly 1 (enables linear combinations of the Xj , j = 1 . . . , d),

• approximation spaces of the leaves: polynomial basis of maximal degree 5,
orthonormal with respect to the measure of Z = g(X).
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Numerical experiments—function with effective dimension 2

Without changes of variables

N Test error maxα∈T rα Storage complexity
100 [0.22, 2.56] · 10−6 4 85

1000 [1.45, 1.55] · 10−7 3 66

10 000 [1.42, 1.46] · 10−7 4 85

With changes of variables (m=2)

N Test error maxα∈T rα Storage complexity
100 [0.11, 1.22] · 10−5 2.50 46.50

1000 [1.45, 9.85] · 10−7 3 55

10 000 [1.40, 5.96] · 10−7 4 74
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Numerical experiments—Function of dimension 20

• Approximation of the function of dimension 20:

f(X) = sin(wT
2X +wT

3X) cos(wT
1X +wT

4X) + cos(wT
1X +wT

3X)

with the wi ∈ R20 taken randomly, i = 1, . . . , 20,
• number of new variables m ≤ 4,
• approximation basis for gi, i = 1, . . . ,m: multidimensional Legendre polynomial
basis of total degree exactly 1,

• approximation spaces of the leaves: polynomial basis of maximal degree 10,
orthonormal with respect to the measure of Z = g(X),

• training sample of size 1000.

Change of variables Test error max
α∈T

rα Storage complexity

No [1.70, 107 100] · 10−6 4 435

Yes (m = 4) [1.56, 7.93] · 10−3 5 342
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Conclusions and outlook

Conclusion
The statistical learning in tree-based format

• exploits the multilinear representation of tensors by using the classical machinery of
linear approximation,

• exploits both low-rank and sparsity,
• can be combined with change of variables techniques.

Outlook

• Perform tree adaptation,
• combine learning in tree-based format and change of variables using other
dimension trees,

• better understand the properties of the approximation set combining tree-based
tensor approximation and changes of variables,

• perform a convergence analysis of the proposed algorithm.
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