

Statistical learning in tree-based tensor format

Erwan Grelier (GeM, Centrale Nantes) in collaboration with **Mathilde Chevreuil** (GeM, Université de Nantes) and **Anthony Nouy** (LMJL, Centrale Nantes) MASCOT-NUM Annual Conference | March 21, 2018

Uncertainty quantification

Let $X = (X_1, ..., X_d)$ be a set of *d* random variables modeling the (computational of experimental) uncertainties in a model *f*, and let *Y* be a quantify of interest:

Y = f(X) .

Two types of problem: forward and inverse.

Model order reduction for the uncertainty quantification

Uncertainty quantification requires the evaluation of the model f for many instances of X. When evaluating the model is costly (computationally or experimentally), we rely on approximations \tilde{f} of f that are cheap to evaluate.

Statistical learning

To compute \tilde{f} , minimize the empirical risk on a training sample $\{(x^k, y^k)\}_{k=1}^N$, where $y^k = f(x^k)$:

$$\min_{\tilde{f} \in \mathcal{V}} \frac{1}{N} \sum_{k=1}^{N} \ell(y^k, \tilde{f}(x^k))$$

where \mathcal{V} is an approximation set, and with ℓ a loss function, e.g. the square loss function:

$$\ell(f(x^k), \tilde{f}(x^k)) = \left| f(x^k) - \tilde{f}(x^k) \right|^2.$$

High-dimensional approximation

When the dimension d of X is high, the approximation $\tilde{f}(X)$ is sought in sets of functions that are described by a number of parameters growing moderately with d.

Tree-based tensor (TBT) formats

Statistical learning in tree-based tensor format

Tree-based tensor learning combined with changes of variables

Tree-based tensor (TBT) formats

Notions of rank

A multivariate function $v(x_1, \ldots, x_d)$ can be identified with an order-d tensor.

• A function with rank one:

$$v(x) = v_1(x_1) \dots v_d(x_d),$$

• a function with (canonical) rank r:

$$v(x) = \sum_{i=1}^{r} v_1^i(x_1) \dots v_d^i(x_d),$$

• a function with α -rank rank_{α} $(v) = r_{\alpha}$:

$$v(x) = \sum_{i=1}^{r_{\alpha}} v_{\alpha}^{i}(x_{\alpha}) v_{\alpha^{c}}^{i}(x_{\alpha^{c}}),$$

with x_{α} and x_{α^c} complementary groups of variables.

Tree-based tensor formats

• For $T \subset 2^{\{1,\ldots,d\}}$, a function with T-rank $r = (r_{\alpha})_{\alpha \in T}$:

$$v(x) = \sum_{i=1}^{r_{\alpha}} v_{\alpha}^{i}(x_{\alpha}) v_{\alpha^{c}}^{i}(x_{\alpha^{c}}), \quad \forall \alpha \in T$$

When T is a dimension partition tree, v has a tree-based tensor (TBT) format.

Tree-based tensor formats

A function in tree-based tensor format admits a parametrization with functions associated to each node α that are multilinear in groups of variables.

Example: hierarchical tucker tensor with d = 5:

 $v(x) = f_{1,2,3,4,5}(f_{1,2,3}(f_1(x_1), f_{2,3}(f_2(x_2), f_3(x_3))), f_{4,5}(f_4(x_4), f_5(x_5)))$

where for the leaves, $1 \leq \nu \leq d$,

 $f_{\nu}: \mathcal{X}^{\nu} \to \mathbb{R}^{r_{\nu}},$

and e.g. for a node α with children β_1 and β_2 ,

 $f_{\alpha}: \mathbb{R}^{r_{\beta_1}} \times \mathbb{R}^{r_{\beta_2}} \to \mathbb{R}^{r_{\alpha}}$

is a bilinear function identified with a tensor in $\mathbb{R}^{r_{\alpha} imes r_{\beta_1} imes r_{\beta_2}}.$

Particular case of deep networks: see [Cohen, Sharir, and Shashua, 2015] [Khrulkov, Novikov, and Oseledets, 2017].

Hierarchical Tucker

Properties of $\mathcal{T}_r^T = \{u : \mathsf{rank}_\alpha(u) \le r_\alpha, \alpha \in T\}$

- The storage complexity of $v \in \mathcal{T}_r^T$ scales as $O(dR^{s+1})$, with $R = \max_{\alpha \in T} r_\alpha$ and s the arity of the tree,
- \mathcal{T}_r^T is a closed set: best approximation problems are well posed and stable algorithms exist,
- an element v of \mathcal{T}_r^T is linear in each of its parameters f_{α} , enabling the use of the classical machinery of linear approximation in an alternating minimization algorithm,
- a higher-order singular value decomposition (HOSVD) of $v \in \mathcal{T}_r^T$ can be computed [Lathauwer, Moor, and Vandewalle, 2000].

Statistical learning in tree-based tensor format

The minimization problem

$$\min_{\boldsymbol{\tau} \in \mathcal{T}_r^T} \frac{1}{N} \sum_{k=1}^N \ell\left(y^k, \boldsymbol{v}(x^k)\right)$$

is solved using an alternating minimization algorithm.

Thanks to the linearity of v, each problem to solve is linear:

$$\min_{a_{\alpha} \in \mathbb{R}^{m_{\alpha}}} \frac{1}{N} \sum_{k=1}^{N} \ell \left(y^{k}, \Psi_{\alpha}(x^{k})^{\mathsf{T}} a_{\alpha} \right),$$

with $\Psi_{\alpha}(x)$ such that $v(x) = \Psi_{\alpha}(x)^{\mathsf{T}} a_{\alpha}$, and with $m_{\alpha} = \begin{cases} r_{\nu} n_{\alpha} & \text{if } \alpha \text{ is a leaf,} \\ r_{\alpha} r_{\beta_{1}} \cdots r_{\beta_{s_{\alpha}}} & \text{otherwise.} \end{cases}$

For a leaf node $\nu \in T$, we compute a sparse approximation by using a working-set strategy. A cross validation estimator of the error is used to choose the optimal set.

Adaptation of the tree-based ranks

- Start with a tree-based rank $r^0 = (0, \dots, 0)$,
- at iteration m, given $v_m \in \mathcal{T}_{r^m}^T$, select a subset of nodes to enrich $T_m \subseteq T$, and define $r^{m+1} = (r^{m+1}_{\alpha})_{\alpha \in T}$ by

$$r_{\alpha}^{m+1} = \begin{cases} r_{\alpha}^{m} + 1 & \text{if } \alpha \in T_{m}, \\ r_{\alpha}^{m} & \text{if } \alpha \notin T_{m}, \end{cases}$$

• to find T_m , compute a rank-one correction w of v^m and determine the smallest α -singular value σ_{α} , for each node $\alpha \in T$, of $v^m + w$. Then,

$$T_m = \left\{ \alpha \in T : \sigma_{\alpha} \ge \theta \max_{\beta \in T} \sigma_{\beta} \right\},\$$

where $\theta \in [0, 1]$. In the next numerical experiments, θ is set to 0.8.

• Approximation in tree-based tensor format of the function f of $X = (X_1, ..., X_5)$, such that $X_i \sim \mathcal{U}(-1, 1)$:

$$f(X) = \frac{1}{(10 + X_1 + 0.5X_2)^2},$$

- approximation spaces of the leaves: Legendre polynomial basis of maximal degree 5,
- adaptation of the rank,
- 4 sample sizes: N = 50, 100, 1000 and 10000,
- 3 dimension trees.

Format	N	Test error	r
ТТТ	50	$[0.04, 1.46] \cdot 10^{-5}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	100	$[0.22, 2.56] \cdot 10^{-6}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	1000	$[1.45, 1.55] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 1, 3, 3
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 4, 4
Tree 1	50	$[0.04, 1.80] \cdot 10^{-5}$	1, 1, 1, 1, 1, 4, 4, 1, 1
	100	$[0.21, 8.66] \cdot 10^{-6}$	1, 1, 1, 1, 1, 4, 4, 1, 1
	1000	$[1.45, 1.58] \cdot 10^{-7}$	1, 1, 1, 1, 1, 3, 3, 1, 1
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 4, 4, 1, 1
Tree 2	50	$[0.07, 1.69] \cdot 10^{-5}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	100	$[0.23, 3.60] \cdot 10^{-6}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	1000	$[1.45, 1.63] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1

Tensor-Train Tucker (TTT)

Format	N	Test error	r
TTT	50	$[0.04, 1.46] \cdot 10^{-5}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	100	$[0.22, 2.56] \cdot 10^{-6}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	1000	$[1.45, 1.55] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 3, 3
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 4, 4
Tree 1	50	$[0.04, 1.80] \cdot 10^{-5}$	1, 1, 1, 1, 1, 1, 4, 4, 1, 1
	100	$[0.21, 8.66] \cdot 10^{-6}$	1, 1, 1, 1, 1, 4, 4, 1, 1
	1000	$[1.45, 1.58] \cdot 10^{-7}$	$1, 1, 1, 1, 1, \frac{3}{3}, \frac{3}{3}, 1, 1$
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 4, 4, 1, 1
Tree 2	50	$[0.07, 1.69] \cdot 10^{-5}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	100	$[0.23, 3.60] \cdot 10^{-6}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	1000	$[1.45, 1.63] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1

Tree 1

Format	N	Test error r	
TTT	50	$[0.04, 1.46] \cdot 10^{-5}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	100	$[0.22, 2.56] \cdot 10^{-6}$	1, 1, 1, 1, 1, 1, 1, 4, 4
	1000	$[1.45, 1.55] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 3, 3
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 1, 1, 4, 4
Tree 1	50	$[0.04, 1.80] \cdot 10^{-5}$	1, 1, 1, 1, 1, 4, 4, 1, 1
	100	$[0.21, 8.66] \cdot 10^{-6}$	1, 1, 1, 1, 1, 4, 4, 1, 1
	1000	$[1.45, 1.58] \cdot 10^{-7}$	1, 1, 1, 1, 1, 3, 3, 1, 1
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 1, 1, 1, 1, 4, 4, 1, 1
Tree 2	50	$[0.07, 1.69] \cdot 10^{-5}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	100	$[0.23, 3.60] \cdot 10^{-6}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	1000	$[1.45, 1.63] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1
	10 000	$[1.42, 1.46] \cdot 10^{-7}$	1, 3, 3, 3, 1, 3, 1, 3, 1

Tree 2

• Approximation in tree-based tensor format of the function f of $X = (X_1, \ldots, X_{10})$, such that $X_i \sim \mathcal{U}(0, 1)$:

$$f(X) = \left(1 + \sum_{i=1}^{d} a_i x_i\right)^{-2}$$

with $0 \leq a_i \leq 1$ randomly chosen,

- approximation spaces of the leaves: Legendre polynomial basis of maximal degree 20,
- adaptation of the rank,
- 3 sample sizes: N = 100, 1000 and 10000,
- 2 dimension trees: Tensor Train Tucker and Balanced Tree.

Format	N	Test error	$\max_{\alpha \in T} r_{\alpha}$	Storage complexity
	100	$[0.04, 1.94] \cdot 10^{-2}$	2	425.50
TTT	1000	$[0.00, 1.52] \cdot 10^{-2}$	3	795
	10 000	$[0.03, 5.27] \cdot 10^{-5}$	3.50	817
	100	$[0.07, 2.07] \cdot 10^{-2}$	2	305.50
Balanced tree	1000	$[0.00, 1.43] \cdot 10^{-2}$	4	1019
	10 000	$[0.06, 4.68] \cdot 10^{-5}$	4	1055

Numerical experiment—peaked function—HTT

Tree-based tensor learning combined with changes of variables

Combine the tree-based tensor learning with changes of variables, by computing a composition of functions:

$$f(x) \approx h(g(x)) = h(g_1(x), \dots, g_m(x)),$$

where $h \in \mathcal{T}_r^T$ with $T \subset 2^{\{1,\ldots,m\}}$, $g : \mathbb{R}^d \to \mathbb{R}^m$ and $g_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \ldots, m$.

- Sequential construction of tree-based formats with increasing m, each time adding a new variable $z_i = g_i(x)$,
- for each *m*, computation of the approximation by alternatively optimizing on
 - *h*, using the method previously introduced,
 - the g_i , i = 1, ..., m, using a Gauss-Newton algorithm.

Combine the tree-based tensor learning with changes of variables, by computing a composition of functions:

$$f(x) \approx h(g(x)) = h(g_1(x), \dots, g_m(x)),$$

where $h \in \mathcal{T}_r^T$ with $T \subset 2^{\{1,\ldots,m\}}$, $g : \mathbb{R}^d \to \mathbb{R}^m$ and $g_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \ldots, m$.

- Sequential construction of tree-based formats with increasing m, each time adding a new variable $z_i = g_i(x)$,
- for each *m*, computation of the approximation by alternatively optimizing on
 - *h*, using the method previously introduced,
 - the g_i , i = 1, ..., m, using a Gauss-Newton algorithm.

Combine the tree-based tensor learning with changes of variables, by computing a composition of functions:

$$f(x) \approx h(g(x)) = h(g_1(x), \dots, g_m(x)),$$

where $h \in \mathcal{T}_r^T$ with $T \subset 2^{\{1,\ldots,m\}}$, $g : \mathbb{R}^d \to \mathbb{R}^m$ and $g_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \ldots, m$.

- Sequential construction of tree-based formats with increasing m, each time adding a new variable $z_i = g_i(x)$,
- for each *m*, computation of the approximation by alternatively optimizing on
 - *h*, using the method previously introduced,
 - the g_i , i = 1, ..., m, using a Gauss-Newton algorithm.

Combine the tree-based tensor learning with changes of variables, by computing a composition of functions:

$$f(x) \approx h(g(x)) = h(g_1(x), \dots, g_m(x)),$$

where $h \in \mathcal{T}_r^T$ with $T \subset 2^{\{1,\ldots,m\}}$, $g : \mathbb{R}^d \to \mathbb{R}^m$ and $g_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \ldots, m$.

- Sequential construction of tree-based formats with increasing m, each time adding a new variable $z_i = g_i(x)$,
- for each *m*, computation of the approximation by alternatively optimizing on
 - *h*, using the method previously introduced,
 - the g_i , i = 1, ..., m, using a Gauss-Newton algorithm.

Combine the tree-based tensor learning with changes of variables, by computing a composition of functions:

 $f(x) \approx h(g(x)) = h(g_1(x), \dots, g_m(x)),$

where $h \in \mathcal{T}_r^T$ with $T \subset 2^{\{1,\ldots,m\}}$, $g : \mathbb{R}^d \to \mathbb{R}^m$ and $g_i : \mathbb{R}^d \to \mathbb{R}$, $i = 1, \ldots, m$.

- Sequential construction of tree-based formats with increasing m, each time adding a new variable $z_i = g_i(x)$,
- for each *m*, computation of the approximation by alternatively optimizing on
 - *h*, using the method previously introduced,
 - the g_i , $i = 1, \ldots, m$, using a Gauss-Newton algorithm.

• Approximation of the previously used function with effective dimension 2, with $X = (X_1, \ldots, X_5)$,

$$f(X) = \frac{1}{(10 + X_1 + 0.5X_2)^2},$$

- \cdot number of new variables m fixed to 2,
- approximation basis for g_i , i = 1, 2: multidimensional Legendre polynomial basis of total degree exactly 1 (enables linear combinations of the X_j , j = 1 ..., d),
- approximation spaces of the leaves: polynomial basis of maximal degree 5, orthonormal with respect to the measure of Z = g(X).

Without changes of variables

Ν	Test error	$\max_{\alpha \in T} r_{\alpha}$	Storage complexity
100	$[0.22, 2.56] \cdot 10^{-6}$	4	85
1000	$[1.45, 1.55] \cdot 10^{-7}$	3	66
10 000	$[1.42, 1.46] \cdot 10^{-7}$	4	85

With changes of variables (m=2)

Ν	Test error	$\max_{\alpha \in T} r_{\alpha}$	Storage complexity
100	$[0.11, 1.22] \cdot 10^{-5}$	2.50	46.50
1000	$[1.45, 9.85] \cdot 10^{-7}$	3	55
10 000	$[1.40, 5.96] \cdot 10^{-7}$	4	74

Numerical experiments—Function of dimension 20

• Approximation of the function of dimension 20:

$$f(X) = \sin(\mathbf{w}_2^\mathsf{T} X + \mathbf{w}_3^\mathsf{T} X) \cos(\mathbf{w}_1^\mathsf{T} X + \mathbf{w}_4^\mathsf{T} X) + \cos(\mathbf{w}_1^\mathsf{T} X + \mathbf{w}_3^\mathsf{T} X)$$

with the $\mathbf{w}_i \in \mathbb{R}^{20}$ taken randomly, $i = 1, \dots, 20$,

- \cdot number of new variables $m \leq 4$,
- approximation basis for g_i , i = 1, ..., m: multidimensional Legendre polynomial basis of total degree exactly 1,
- approximation spaces of the leaves: polynomial basis of maximal degree 10, orthonormal with respect to the measure of Z = g(X),
- training sample of size 1000.

Numerical experiments—Function of dimension 20

• Approximation of the function of dimension 20:

$$f(X) = \sin(\mathbf{w}_2^\mathsf{T} X + \mathbf{w}_3^\mathsf{T} X) \cos(\mathbf{w}_1^\mathsf{T} X + \mathbf{w}_4^\mathsf{T} X) + \cos(\mathbf{w}_1^\mathsf{T} X + \mathbf{w}_3^\mathsf{T} X)$$

with the $\mathbf{w}_i \in \mathbb{R}^{20}$ taken randomly, $i=1,\ldots,20$,

- number of new variables $m \leq 4$,
- approximation basis for g_i , i = 1, ..., m: multidimensional Legendre polynomial basis of total degree exactly 1,
- approximation spaces of the leaves: polynomial basis of maximal degree 10, orthonormal with respect to the measure of Z = g(X),
- training sample of size 1000.

Change of variables	Test error	$\max_{\alpha \in T} r_{\alpha}$	Storage complexity
No	$[1.70, 107100] \cdot 10^{-6}$	4	435
Yes (m = 4)	$[1.56, 7.93] \cdot 10^{-3}$	5	342

Conclusions and outlook

Conclusion

The statistical learning in tree-based format

- exploits the multilinear representation of tensors by using the classical machinery of linear approximation,
- exploits both low-rank and sparsity,
- can be combined with change of variables techniques.

Outlook

- Perform tree adaptation,
- combine learning in tree-based format and change of variables using other dimension trees,
- better understand the properties of the approximation set combining tree-based tensor approximation and changes of variables,
- perform a convergence analysis of the proposed algorithm.

References

Bachmayr, M., R. Schneider, and A. Uschmajew (2016). Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. *Foundations of Computational Mathematics* 16(6), 1423–1472.

- Chevreuil, M., R. Lebrun, A. Nouy, and P. Rai (2015). A least-squares method for sparse low rank approximation of multivariate functions. *SIAM/ASA JUQ 3*(1), 897–921.
- Cohen, N., O. Sharir, and A. Shashua (2015). On the expressive power of deep learning: A tensor analysis. *CoRR abs/1509.05009*.
- Khrulkov, V., A. Novikov, and I. Oseledets (2017). Expressive power of recurrent neural networks.
- Lathauwer, L. D., B. D. Moor, and J. Vandewalle (2000). A multilinear singular value decomposition. *SIAM Journal on Matrix Analysis and Applications 21*(4), 1253–1278.
- Nouy, A. (2015). Low-rank tensor methods for model order reduction. In *Handbook of Uncertainty Quantification*, pp. 1–26. Springer International Publishing.

Thank you for your attention

Contact: erwan.grelier@ec-nantes.fr