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Statistical learning for uncertainty quantification in high dimension

Uncertainty quantification

let X = (X1,...,X4) be a set of d random variables modeling the (computational of
experimental) uncertainties in a model f, and let Y be a quantify of interest:

Y = f(X) .

Two types of problem: forward and inverse.

Model order reduction for the uncertainty quantification

Uncertainty quantification requires the evaluation of the model f for many instances of
X. When evaluating the model is costly (computationally or experimentally), we rely on
approximations f of f that are cheap to evaluate.
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Statistical learning for uncertainty quantification in high dimension

Statistical learning
To compute f, minimize the empirical risk on a training sample {(mk,yk)}:}:l, where

Yt = f(a):

1= k Fok
ﬁ%}ﬁ;“‘/ , f(@F))

where V is an approximation set, and with ¢ a loss function, e.g. the square loss function:

2

U f(=*), F(a5) = | £a*) = Flah)| -

High-dimensional approximation

When the dimension d of X is high, the approximation f(X) is sought in sets of
functions that are described by a number of parameters growing moderately with d.
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Tree-based tensor (TBT) formats
Statistical learning in tree-based tensor format

Tree-based tensor learning combined with changes of variables
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Tree-based tensor (TBT) formats




Notions of rank

A multivariate function v(z1,...,z4) can be identified with an order-d tensor.

- A function with rank one:

U(I):::Ul(xl)...vd(de

- a function with (canonical) rank r:

3

with z, and z,. complementary groups of variables.
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Tree-based tensor formats

- For T c 2{b4} a function with T-rank r = (r4)aer:

U(.T) = Z"U&({Ea)’llég (.’L’ac), Va c T

i=1
When T is a dimension partition tree, v has a tree-based tensor (TBT) format.

{1,2,3,4,5}

{1,2,3,4} {1,2,3,4,5}

{1,2,3} (5} {1,2,3} {4,5}
{1,2,3,4,5}
{1,2} .{).\\ {2,3}
‘ o
® {1} {4} {5}

1 {2y 38+ {4 {5} {1 {2} 21 {3}

Tucker Tensor Train Tucker Hierarchical Tucker
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Tree-based tensor formats

A function in tree-based tensor format admits a parametrization with functions
associated to each node « that are multilinear in groups of variables.

Example: hierarchical tucker tensor with d = 5:
U(CU) = f1,2.3,4.5(fl,z.,:s(fi (961)7 f2,3(f2(1‘2)» fs(fb's))% f4,5(f4(x4), f%(%)))

where for the leaves, 1 < v < d, fi2345

fo: XY - R™,

and e.g. for a node « with children 3; and f,

fa :R™1 x R™P2 — R™

is a bilinear function identified with a tensor in

RT’Q ><'r‘51 ><'r‘32

Hierarchical Tucker

Particular case of deep networks: see [Cohen, Sharir, and Shashua, 2015] [Khrulkov,

Novikov, and Oseledets, 2017].
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Tree-based tensor formats

Properties of 7.7 = {u : rank,(u) < r,,a € T}

+ The storage complexity of v € 7,T scales as O (dR*™!), with R = max and s the
arity of the tree,

- T,T is a closed set: best approximation problems are well posed and stable
algorithms exist,

- an element v of 7,7 is linear in each of its parameters f,,, enabling the use of the
classical machinery of linear approximation in an alternating minimization algorithm,

- a higher-order singular value decomposition (HOSVD) of v € T,T can be
computed [Lathauwer, Moor, and Vandewalle, 2000].
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Statistical learning in tree-based
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Statistical learning in tree-based tensor format

The minimization problem
min — E 1
v 6'7'7‘ jg:: J
is solved using an alternating minimization algorithm.

Thanks to the linearity of v, each problem to solve is linear:

min E Ta
i, N Z o)

TN, if ais a leaf,

with ¥, () such that v(z) = ¥, (z) a,, and with m, = .
raTs, tt-Tp,. Otherwise.

For a leaf node v € T, we compute a sparse approximation by using a working-set
strategy. A cross validation estimator of the error is used to choose the optimal set.
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Statistical learning in tree-based tensor format

Adaptation of the tree-based ranks

- Start with a tree-based rank r = (0,...,0),
- at iteration m, given v, € T,%., select a subset of nodes to enrich Ty, € T, and define

rmtl = (T'amﬂ)ae:r by

e rm4+1 ifa€ Ty,
Tl — .
rm ifaé¢ T,

«

- to find T,,, compute a rank-one correction w of v™ and determine the smallest
a-singular value o, for each node a € T, of v™ + w. Then,

Ty = {a €T : 04> Qmaxa[;},
BET

where 6 € [0,1]. In the next numerical experiments, ¢ is set to 0.8.
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Numerical experiment—function with effective dimension 2

- Approximation in tree-based tensor format of the function f of X = (X;,..., Xs),
such that X; ~U(—1,1):

1

F(X) = (10 + X1 + 0.5X5)%’

- approximation spaces of the leaves: Legendre polynomial basis of maximal degree 5,
- adaptation of the rank,
- 4 sample sizes: N = 50, 100, 1000 and 10000,

- 3 dimension trees.
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Numerical experiment—function with effective dimension 2

1,3,3,3,1,3,1,3,1 Tensor-Train Tucker (TTT)

Format N Test error r
50 [0.04,1.46] - 1075 1,1,1,1,1,1,1,4,4
- 100  [0.22,2.56]-107% 1,1,1,1,1,1,1,4,4
1000  [1.45,1.55]-10~7 1,1,1,1,1,1,1,3,3
10000 [1.42,1.46]-1077 1,1,1,1,1,1,1,4,4
50 [0.04,1.80] -10—° 1,1,1,1,1,4,4/1,1
100 [0.21,8.66] - 1076 1,1,1,1,1,4,4,1,1
Tree 1 _7
1000  [1.45,1.58]-10 1,1,1,1,1,3,3,1,1
10000 [1.42,1.46]-10-7 1,1,1,1,1,4,4,1,1
50 [0.07,1.69]-107° 1,3,3,3,1,3,1,3,1
100 [0.23,3.60] - 1076 1,3,3,3,1,3,1,3,1
Tree 2 =
1000  [1.45,1.63]-10
10000 [1.42,1.46]-10"7 1,3,3,3,1,3,1,3,1

11/19



Numerical experiment—function with effective dimension 2

Format N Test error r

50  [0.04,1.46]-10~° 1,1,1,1,1,1,1,4.4

[ ]
T 100 [0.22,2.56]-1076% 1,1,1,1,1,1,1,4,4
1000  [1.45,1.55]-1077 1,1,1,1,1,1,1,3,3
10000 [1.42,1.46]-1077 1,1,1,1,1,1,1,4,4
50 [0.04,1.80]-10~> 1,1,1,1,1,4,4,1,1
" 100  [0.21,8.66]-107% 1,1,1,1,1,4,4,1,1
1000 [1.45,1.58]-10~7 1,1,1,1,1,3,3,1,1
10000 [1.42,1.46]-10"7 1,1,1,1,1,4,4,1,1
50 [0.07,1.69] -10~° 1,3,3,3,1,3,1,3,1

—6
S 100  [0.23,3.60] - 10 1,3,3,3,1,3,1,3,1 e

1000 [1.45,1.63]-10~7 1,3,3,3,1,3,1,3,1

[ ]

10000 [1.42,1.46]-10~7 1,3,3,3,1,3,1,3,1
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Numerical experiment—function with effective dimension 2

Format N Test error r
50 [0.04,1.46]-1075 1,1,1,1,1,1,1,4,4
T 100 [0.22,2.56]-1076% 1,1,1,1,1,1,1,4,4
1000  [1.45,1.55]-10"7 1,1,1,1,1,1,1,3,3
10000 [1.42,1.46]-10"7 1,1,1,1,1,1,1,4,4
50 [0.04,1.80]-107° 1,1,1,1,1,4,4,1,1
100  [0.21,8.66]-107% 1,1,1,1,1,4,4,1,1

Tree 1

1000 [1.45,1.58]-10-7 1,1,1,1,1,3,3,1,1
10000 [1.42,1.46]-10-7 1,1,1,1,1,4,4,1,1
50 [0.07,1.69] - 1075 1,3,3,3,1,3,1,3,1
S 100  [0.23,3.60]-107% 1,3,3,3,1,3,1,3,1
1000 [1.45,1.63]-10~7 1,3,3,3,1,3,1,3,1
10000 [1.42,1.46]-10"7 1,3,3,3,1,3,1,3,1

7 3 ) ) ) 7 3 )

Tree 2
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Numerical experiment—peaked function

- Approximation in tree-based tensor format of the function f of X = (X;,..., X10),
such that X; ~ 4(0,1):

d —2
j)(;X?) = (:1 —+ :E:: (lilh:)

with 0 < a; < 1 randomly chosen,
- approximation spaces of the leaves: Legendre polynomial basis of maximal degree
20,
- adaptation of the rank,
- 3sample sizes: N = 100, 1000 and 10000,

« 2 dimension trees: Tensor Train Tucker and Balanced Tree.
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Numerical experiment—peaked function

Format N Test error max 7, Storage complexity
ac
100 [0.04,1.94] - 1072 2 425.50
TTT 1000  [0.00,1.52] - 102 3 795
10000 [0.03,5.27] - 10~° 3.50 817
100 [0.07,2.07] - 102 2 305.50
Balanced tree 1000  [0.00,1.43] - 10—2 4 1019
10000 [0.06,4.68] - 10~° 4 1055
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Numerical experiment—peaked function—HTT
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Tree-based tensor learning
combined with changes of
variables




Tree-based tensor learning combined with changes of variables

Aim
Combine the tree-based tensor learning with changes of variables, by computing a
composition of functions:

f(ﬂf) ~ h((](TJ)) - h(!]l(x)a 000 agm,(z))a
where h € T.T with T c 2{L»m} g R4 s R™and g; : R 5 R, i=1,...,m.

Outline of the algorithm

- Sequential construction of tree-based formats with increasing m,

each time adding a new variable z; = g;(x), 1
- for each m, computation of the approximation by alternatively
optimizing on
- h, using the method previously introduced, 2 3
- the g;, i =1,...,m, using a Gauss-Newton algorithm. {1} {2}
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Numerical experiments—function with effective dimension 2

- Approximation of the previously used function with effective dimension 2, with

1
(10+ X; +0.5X5)2’

f(X) =

- number of new variables i fixed to 2,

- approximation basis for g;, 7 = 1,2: multidimensional Legendre polynomial basis of
total degree exactly 1 (enables linear combinations of the X, j =1 ...,d),

- approximation spaces of the leaves: polynomial basis of maximal degree 5,
orthonormal with respect to the measure of Z = g(X).
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Numerical experiments—function with effective dimension 2

Without changes of variables

N Test error max,c7 T, Storage complexity
100  [0.22,2.56] - 10~° 4 85
1000  [1.45,1.55]- 1077 3 66
10000 [1.42,1.46]- 1077 4 85

With changes of variables (m=2)

N Test error maX.cer e Storage complexity
100 [0.11,1.22] - 10~5 2.50 46.50
1000  [1.45,9.85] - 107 3 55

10000 [1.40,5.96] - 107 4 74
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Numerical experiments—Function of dimension 20

- Approximation of the function of dimension 20:

f(X) = sin(wa X + w3 X) cos(w] X +wj X) + cos(w] X +wiX)

with the w; € R2 taken randomly, i = 1,. .., 20,

- number of new variables m < 4,

- approximation basis for g;, i = 1,...,m: multidimensional Legendre polynomial
basis of total degree exactly 1,

- approximation spaces of the leaves: polynomial basis of maximal degree 10,
orthonormal with respect to the measure of Z = g(X),

- training sample of size 1000.
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- approximation basis for g;, i = 1,...,m: multidimensional Legendre polynomial
basis of total degree exactly 1,

- approximation spaces of the leaves: polynomial basis of maximal degree 10,
orthonormal with respect to the measure of Z = g(X),

- training sample of size 1000.

Change of variables Test error Max 7, Storage complexity
ae
No [1.70,107 100] - 10~¢ 4 435
Yes (m = 4) [1.56,7.93] - 1073 5 342
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Conclusions and outlook

Conclusion
The statistical learning in tree-based format

- exploits the multilinear representation of tensors by using the classical machinery of
linear approximation,
- exploits both low-rank and sparsity,

- can be combined with change of variables techniques.
Outlook

- Perform tree adaptation,

- combine learning in tree-based format and change of variables using other
dimension trees,

- better understand the properties of the approximation set combining tree-based
tensor approximation and changes of variables,

- perform a convergence analysis of the proposed algorithm.
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