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Context

The Organic Rankine Cycle (ORC) is a viable technology for the exploitation of renewable energies like concentrated solar power, geothermal power, biomass or waste heat
recovery. In these applications, it usually outperforms classic steam cycles for its simplicity, the lower operational costs and the higher thermodynamic efficiency.

Figure 1: ORC schematic representation Figure 2: ORC on Ts thermodynamic chart

Main ORC parameters
I Temperature at the Condenser Tcon = T1 = T7

I Pressure at the Evaporator Peva = P2 = P3 = P4 = P5

I Turbine isentropic efficiency ηt =
Turbine Real Work

Turbine Ideal Work
I Superheating ∆Tsh = T5 − T4

I Pump isentropic efficiency ηp =
Pump Ideal Work

Pump Real Work
I ORC working fluid: R245fa

Thermodynamic properties of the working fluid are com-
puted by using an advanced equation of state based on
the Helmholtz free energy formulation, available through the
thermodynamic library Coolprop [1].

As a drawback, due to the aleatory of the heat source, to the properties of the organic fluids and to the need for reducing manufacturing costs, ORCs are by nature subject
to several forms of uncertainty.

Uncertain parameters

5 uncertain parameters are considered, all varying with uniform distribution.

Tcon Peva ηt ∆Tsh ηp
Lower Bound 288 K 1.8E+06 Pa 75% 1.0 K 70%
Upper Bound 315 K 2.3E+06 Pa 90% 16.0 K 85%

Quantity of Interest (QoI)

ORC Efficiency ηORC =
W

Qin
=

h5(P5,T5)− h6(P6, s6)

h5(P5,T5)− h2(P2,T2)
(1)

I W = power output I Qin = power input

I h = enthalpy I s = entropy I P = pressure I T = temperature

Surrogate Models for Uncertainty Propagation

The Bayesian framework is a powerful tool for dealing with uncertain data.
The quantity of interest y(ξ) depends on a vector of uncertain variables ξ.

Posterior = p(y|y∗) =
Sampling Distribution X Prior

Marginal Distribution
=

p(y∗|y) p(y)

p(y∗|ξ)

In this work surrogate models are used to relate the QoI to the uncertain input.

I Bayesian Kriging (BK) [2].

I Gradient Enhanced Bayesian CoKriging (CK) [3].

The latter is an enhancement of Kriging using also the information about gradient on
data as covariables.

The gradient of the QoI w.r.t. the inputs
∂y

∂ξ
is evaluated analytically from Eq.1.

Benchmark of surrogate models

The response surfaces of BK and CK are constructed by using several experimental
designs with different numbers of samples of the 5 uncertain parameters (Latin
Hypercube). The surfaces are then evaluated on a full factorial grid of 55 points in
order to get the predicted values, which are compared to the exact ones (from Eq.1).

I Kriging 16 samples

I Kriging 20 samples

I Kriging 25 samples

I CoKriging 4 samples

I CoKriging 5 samples

I CoKriging 7 samples

Statistics

For both surrogate models the convergence is verified by monitoring the trend of the
average value of the coefficient of variation on the response surface w.r.t. the
number of samples in the experimental design.

Method N samples µ σ2

BK 50 0.148 4.80E-04
CK 10 0.147 4.97E-04

I Computational time for BK:

Nsample−BK tCPU−ORC + tBK
I Computational time for CK:

Nsample−CK tCPU−ORC + αder + tCK

Global Sensitivity Analysis

An ANOVA decomposition is carried out to identify the greatest contribution to the
variance of the QoI.

Sobol 1st Order Sobol Total Index
Tcond 74 % 74 %
Pev 4 % 4 %
ηt 21 % 22 %
ηp 0 0 %

∆Tsh 0 0 %

Next steps

Extension of CK to surrogate modelling of ORC turbines with CFD simulations.
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