Estimating a Probability of Failure with an Adaptive Algorithm

Lucie Bernard & Arnaud Guyader (LPSM - Sorbonne Université) & Philippe Leduc (STMicroelectronics - Tours) & Florent Malrieu (LMPT - Univ. Tours)

1. Framework & Objectives

Let us consider:
- A cube $A = [a, b]^d$.
- An expensive-to-evaluate black-box function $g : A \rightarrow \mathbb{R}$.
- A random variable $X \sim P_x$ on A.
- A threshold $T \in \mathbb{R}$.

We want to provide an estimation of the small probability of failure p defined by

$$p = P(g(X) > T) = P_X(S),$$

where $S = \{x \in A, g(x) > T\}$, performing at most n evaluations of g.

Main assumptions

1. **Level set condition**

 We assume that
 $$\lambda(\{x \in A \mid |g(x) - T| \leq \delta\}) \leq L \delta, \quad \delta > 0,$$
 where $\lambda(E)$ is the Lebesgue measure of a set E. See [1].

2. **Lipschitz condition**

 We assume that g is Lipschitz with a known constant $M > 0$, meaning that for all $(x, x') \in A \times A$, we have
 $$|g(x) - g(x')| \leq M |x - x'|_\infty.$$

Implementation of the algorithm

The algorithm defines a decreasing sequence $(A_k)_{k \geq 0}$, such that A_k is the set of all cubes Q of side length $2^{-k}|b - a|$ where g is still likely to exceed T. It also defines increasing sequences $(S_k)_{k \geq 0}$ and $(O_k)_{k \geq 0}$ such that S_0 (resp. O_0) is the set of all cubes $Q \in A_k$ where g is always above (resp. below) T. It stops when n evaluations of g have been performed.

- **Step $k = 0$**

 We defined $A_0 = \{x\}$ and $S_0 = O_0 = \emptyset$.

- **Step $k = 1, 2, \ldots$**

 For all cube $Q \in A_{k-1}$, we evaluate g at the center c_Q of Q.

 - We define S_{k-1} (resp. O_{k-1}) as the set of all cubes $Q \in A_{k-1}$ for which
 $$g(c_Q) - 2^{-k}M|b - a| > T$$
 (resp. $g(c_Q) + 2^{-k}M|b - a| \leq T$), that is the set of all cubes $Q \in A_{k-1}$ where g is always above (resp. below) T.

 - We define $A_{k-1} = A_{k-1} \setminus (S_{k-1} \cup O_{k-1})$, that is the set of all cubes $Q \in A_{k-1}$ where g is still likely to exceed T.

 Then, we define:
 - $S_k = S_{k-1} \cup S_{k-1}$ (resp. $O_k = O_{k-1} \cup O_{k-1}$) as the set of all cubes $Q \in A_k$ where g is always above (resp. below) T.
 - A_k as the set of all cubes of side length $2^{-k}|b - a|$, which are the children of A_{k-1}, so that $g(A_k) = 2^{-k}|\#A_{k-1}|$.

 - At the end of step k, we have the upper-bound $p_k \geq p$ defined by:
 $$p_k = P_X(A_k) + P_S(S_k).$$

2. **Improvement of the algorithm in practice**

 - At step $k \geq 1$, one can take into account of all information provided by the Lipschitz condition and extract, for any $Q \in A_{k-1}$, an hyper rectangle H_Q of center c_Q, where g is always above of below T.

 - At the end of step k, we have the upper-bound $p_k \geq p$ defined by:
 $$p_k = P_X(A_k) + P_S(S_k).$$

3. **Some remarks**

 1. At the end of step $k \geq 2$, the number n_k of evaluations of g satisfies:
 $$n_k = 1 + 2^d \sum_{j=1}^k \#(A_{j-1})$$
 $$\leq \begin{cases}
 1 + LM |b - a|2(k - 1) & \text{if } d = 1, \\
 1 + LM |b - a|2^2(2^d - 1) - 2^2(2^d - 1) & \text{if } d \geq 2.
 \end{cases}$$

 2. For all $k \geq 0$, we have:
 $$P(X \in S_k) \leq p \leq P(X \in A_k) + P(X \in S_k) = p_k.$$

 3. Let f_k be the density of X and $m = \text{sup}_{x \in A} f_k(x)$. For all $k \geq 1$, we have:
 $$P(X \in A_k) \leq m |b - a|^{d+1} LM \times 2^{1-d}.$$

In case of P_X has a density only known up to a normalizing constant, we use an Adaptive Multilevel Splitting method, also called Subset Simulation (see e.g. [2, 3]) to give an estimation of p_k. The principle is as follows:

- For $k \geq 1$, let Q_k be a cube in A_k and Q_{k-1} be its parent, with $Q_0 = A$ and $P(X \in Q_0) = 1$.

- Since we have
 $$P(X \in Q_k) = P(X \in Q_k | X \in Q_{k-1}) P(X \in Q_{k-1}),$$
 then the probability $P(X \in Q_1)$ can be easily estimated.

- The law P_X has a density which is known up to a normalizing constant, so that Metropolis-Hasting algorithm techniques can be applied to draw a Monte Carlo sample X_1, \ldots, X_{n_k} from the restriction of P_X to Q_{k-1} (i.e. from $L(X | X \in Q_{k-1})$).

- At the beginning of the step $k \geq 1$, the probability $P(X \in Q_{k-1})$ has already been estimated.

Finally, the precision of the estimation of p only depends on the budget n and the size N of the Monte Carlo sample.

References

