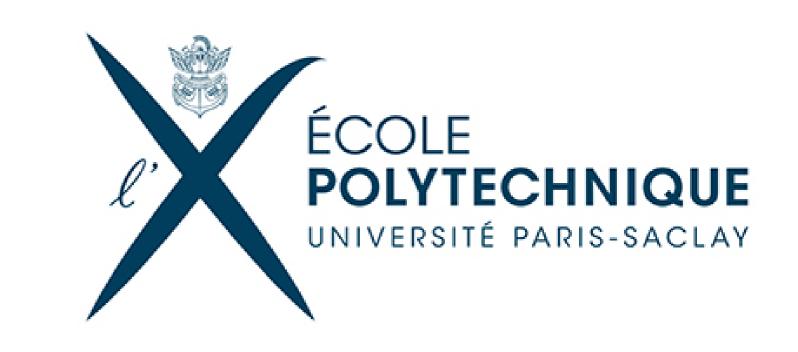
Uncertainty Quantification for Stochastic Approximation Limits

Uladzislau Stazhynski¹

joint work with S. Crépey², G. Fort ³ and E. Gobet⁴

1,4 - Centre de Mathématiques Appliquées (CMAP), Ecole Polytechnique and CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau Cedex, France, 2 - LaMME, Univ. Evry, CNRS, Université Paris-Saclay, 91037, Evry, France,

3 - CNRS, Institut de Mathmatiques de Toulouse (IMT), 31062 Toulouse Cedex 9, France.



Introduction

Stochastic Approximation (SA) method

▶ Want to find a solution z^* of the equation

$$\mathbb{E}[H(z,V)] = 0,$$

where V is random noise, for which i.i.d. simulations are available, and H is known.

▶ **Stochastic Approximation** method – introduced by Robbins and Monro in [4]:

$$z^{k+1} = z^k - \gamma_{k+1} H(z^k, V^{k+1})$$

where $(V^k)_k$ are i.i.d. $V^k \sim V$.

- ▶ Under suitable assumptions on $(\gamma_k)_{k\geq 0}$ and H we obtain $\lim_{k\to +\infty} z^k = z^*$.
- ▶ Particular cases of SA: Monte Carlo and Stochastic Gradient Descent.

▶ **SA applications**: optimization, parameter estimation, signal processing, adaptive control, Monte Carlo optimization of stochastic systems, stochastic gradient descent methods in machine learning, adaptive Monte Carlo sampler, efficient tail computations, etc. (see e.g. [3, 1]).

Uncertainty Quantification problem for SA limits

- ▶ Assume that V follows a distribution $\mu(\theta, dv)$ which depends on an uncertain parameter $\theta \in \Theta$, for which some prior distribution $\pi(d\theta)$ on Θ is available.
- ▶ The limit ϕ^* of the corresponding SA procedure

$$\phi^{k+1} = \phi^k - \gamma_{k+1} H(\phi^k, V^{k+1})$$

depends on θ , i.e. $\phi^* = \phi^*(\theta)$.

(1)

▶ Our goal is to **reconstruct the function** $\phi^*(\cdot)$ as an element of the Hilbert space corresponding to the scalar product induced by π , i.e. $\langle f; g \rangle_{\pi} := \int_{\Theta} f(\theta) g(\theta) \pi(\mathrm{d}\theta)$.

Methodology & Results

Formalization of the problem

- ► Assume that:
- -V is a metric space, $\Theta \subset \mathbb{R}^d$, and $H : \mathbb{R}^q \times V \times \Theta \to \mathbb{R}^q$.
- $-\pi$ is a probability distribution on Θ , μ is a transition kernel from Θ to \mathcal{V} .
- $-L_{2,q}^{\pi}$ is the Hilbert space of functions $f:\Theta\to\mathbb{R}^q$ with the norm $\|f\|_{\pi}:=\sqrt{\sum_{i=1}^q\langle f_i;f_i\rangle_{\pi}}$. We fix an orthogonal basis $\{B_i(\cdot), i \in \mathbb{N}\}\$ of $L_{2,q}^{\pi}$.
- ► The main problem writes as:

Find
$$\phi^{\star}$$
 in $L^{\pi}_{2,q}$ such that
$$\int_{\mathbb{N}} H(\phi^{\star}(\theta),v,\theta)\mu(\theta,\mathrm{d}v)=0, \qquad \pi\text{-a.s.}$$

▶ This is equivalent to finding $(u_i^*)_{i \in \mathbb{N}}$ such that $\phi^* = \sum_i u_i^* B_i$.

The USA algorithm:

▶ In [2] we propose the following algorithm to solve (1):

- Inputs: sequences $\{\gamma_k, k \ge 1\}$ (step-size), $\{m_k, k \ge 1\}$ (growing dimension), $\{M_k, k \ge 1\}$ (number of simulations at each iteration); initial point $\{u_i^0, i = 0, \dots, m_0\}$, total number of iterations $K \in \mathbb{N}$; $(\theta_{k+1}^s, V_{k+1}^s), s = 1, \dots, M_{k+1}, -\text{i.i.d.}$ simulations w.r.t. $\pi(d\theta)\mu(\theta, dv)$.
- **Repeat for** k = 1, ..., K: for $i = 0, ..., m_{k+1}$

$$u_i^{k+1} = u_i^k - \gamma_{k+1} M_{k+1}^{-1} \sum_{s=1}^{M_{k+1}} H\left(\sum_{j=0}^{m_k} u_j^k B_j(\theta_{k+1}^s), V_{k+1}^s, \theta_{k+1}^s\right) B_i(\theta_{k+1}^s)$$

and $u_i^k = 0$ for $i > m_{k+1}$.

- **Output:** the vector $\{u_i^K, i = 0, ..., m_K\}$.
- ▶ This gives the following approximation of ϕ^* : $\phi^K := \sum_{i=0}^{m_K} u_i^K B_i$.
- ► Main features of the USA algorithm:
 - USA is a **single iterative procedure without nested calculations** (as opposed to naive Monte Carlo UQ) - this yields much lower computational cost.
 - It is an iterative procedure in growing dimension (dim. $\to \infty$), yet it is fully implementable.

Convergence analysis

- ▶ USA has a specific form, since it is a stochastic approximation procedure in growing dimension.
- ▶ As argued in [2], existing works on SA in finite dimension or in Hilbert spaces cannot be applied to show the convergence.
- ▶ The main contribution of [2] is the original convergence proof of the USA algorithm:

Thm 1. Under suitable assumptions (see [2]) there exists a random variable ϕ^{∞} taking values in the solution set of (1) such that

$$\lim_{k\to\infty} \left\|\phi^k - \phi^\infty\right\|_\pi = 0 \text{ a.s.}, \qquad \lim_{k\to\infty} \mathbb{E}\left[\left\|\phi^k - \phi^\infty\right\|_\pi^p\right] = 0 \quad \text{ for any } p \in (0,2) \ .$$

Numerical Tests (details of the numerical examples are not given here, see [2])

▶ Illustration of the convergence $\phi^K \to \phi^*$:

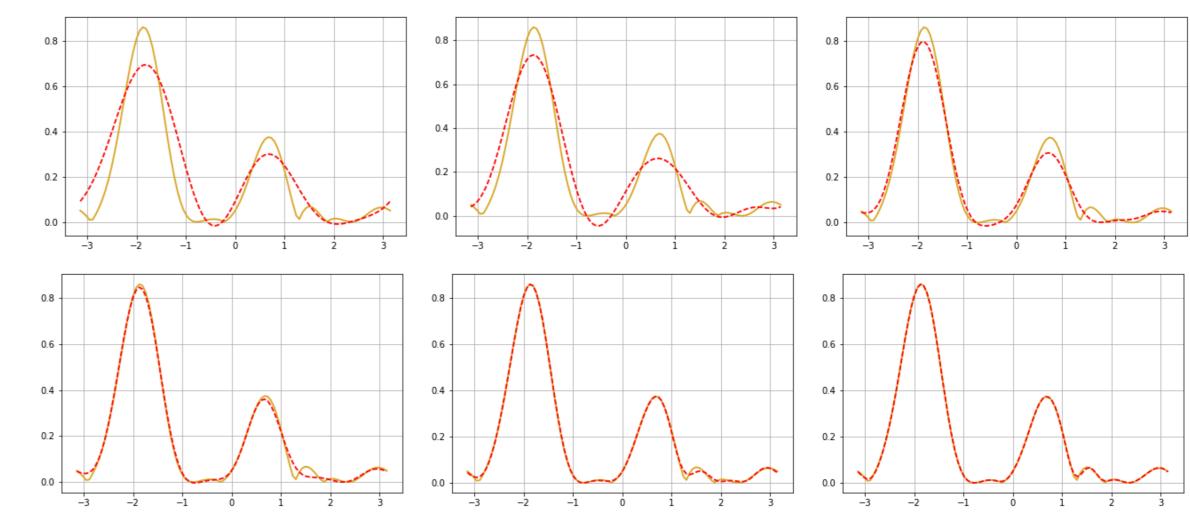


Figure 1: The functions ϕ^* and ϕ^K are displayed in respective solid line and dashed lines, as a function of $\theta \in [-\pi, \pi]$, $K \in$ $\{64, 128, 256, 512, 1024, 2048\}.$

- ▶ Dimension growth feature of the USA algorithm is important for:
 - Asymptotic convergence to the solution ϕ^* ;
 - Bias-free estimation of low-order coefficients;
 - Optimization of the convergence trajectory;

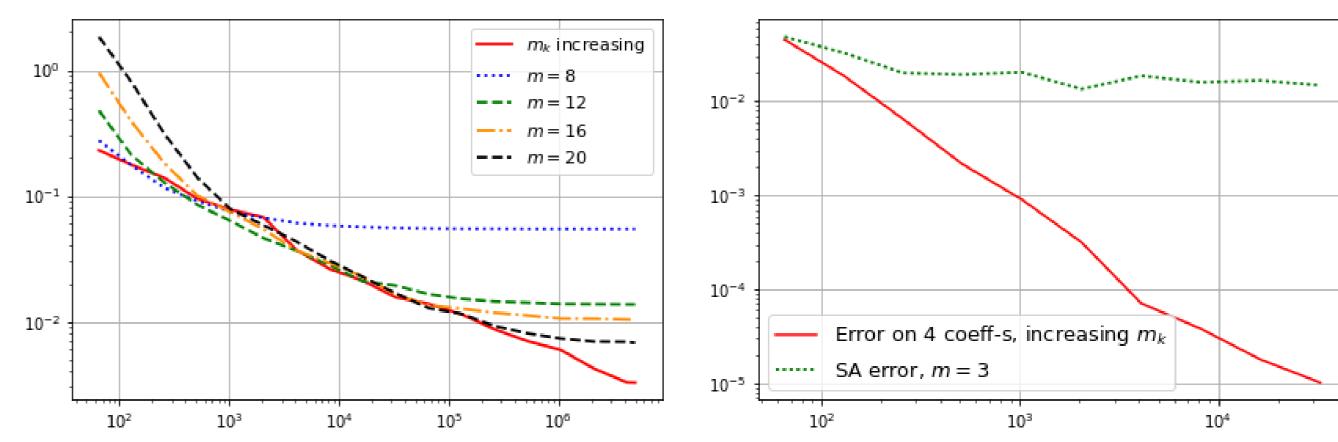


Figure 2: Left: $\mathbb{E}\left[\|\phi^K - \phi^*\|_{\pi}^2\right]^{1/2}$ as a function of the number of iterations, for different choices of the sequence $\{m_k, k \in \mathbb{N}\}$: m_k increasing (solid line) and $m_k = m$ fixed (other lines). Right: In the case $m_k \to \infty$ (solid line) and $m_k = m = 3$ (dotted line), the error on the first 4 coefficients $\mathbb{E}\left[\sum_{i=0}^{3}(u_i^K-u_i^{\star})^2\right]^{1/2}$ as a function of the number of iterations K.

► Choice of the dimension (m_k) growth speed: here $m_k = k^b$ for different values of b

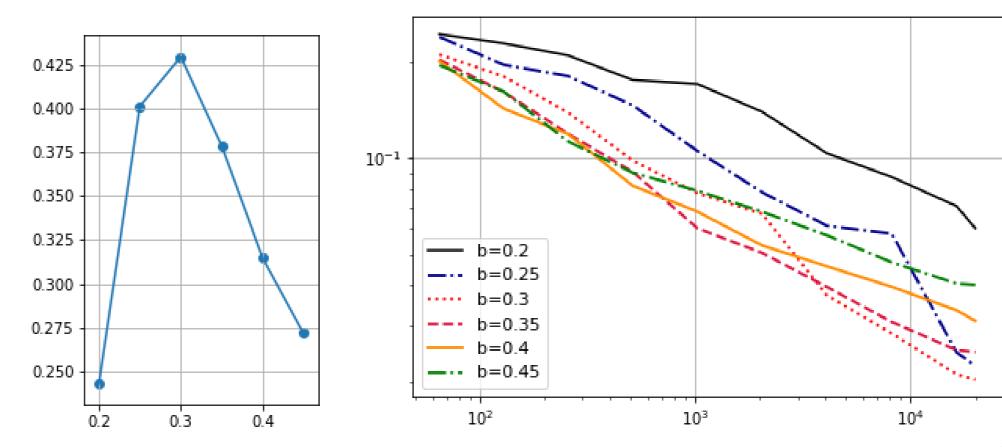


Figure 3: Left: empirical L^2 convergence rate for $b \in \{0.2, 0.25, 0.3, 0.35, 0.4, 0.45\}$. Right: total error $\mathbb{E}\left[\left\|\phi^K - \phi^\star\right\|_{\pi}^2\right]^{1/2}$ as a function of the number of iterations K, for different values of b.

- ▶ Impact of the choice of *b* (dimension growth speed):
- Bias-variance trade-off as b increases.
- For $b \le 0.3$ the total error is dominated by the truncation error $\sum_{i>m_K} (u_i^*)^2$ (i.e. bias).
- Optimal choice of b: exact result in the upcoming paper on the L^2 -convergence rate of the USA algorithm.

Conclusions

- ► The USA algorithm is efficient, fully constructive and easy to implement.
- ▶ It is given by a single procedure without nested calculations, which leads to much higher efficiency with respect to naive methods.
- ▶ The convergence assumptions are given in terms of finite dimensional problems for fixed values of θ , as opposed to abstract assumptions involving Hilbert space notions, often hard to check in practice.

Future prospects

- ▶ Upcoming paper on the L^2 -convergence rate of the USA algorithm.
- ▶ Applications to the calculation of model sensitivities w.r.t. θ .
- ▶ Applications to parametric risk measure calculation, risk measure sensitivities and XVAs calculation in finance.

References

- [1] L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- [2] S. Crépey, G. Fort, E. Gobet, and U. Stazhynski. Uncertainty quantification for stochastic approximation limits using chaos expansion. Preprint, available at https://hal.archives-ouvertes.fr/hal-01629952, 2017.
- [3] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications, volume 35 of Application of Mathematics.
- [4] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22(3):400–407, 1951.