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Abstract:

Given a hyperrectangle A = [a,b] = szl [a;, b;], we consider the stochastic model Y = ¢(X),

where X is a random vector with support in A and g : A — R is a black-box function that can
be computed at any point x € A but which is costly to evaluate. We typically assume that X
has a density which is known up to a normalizing constant, so that Metropolis-Hastings (MH)
techniques can be applied to simulate from the law of X or from its restriction to a subset of A.

Next, given a threshold T' € R, we want to estimate the small probability of failure p defined as:
p=P(Y >T) = P(g(X) > T) = Px(T),

where I' = {x € A, g(x) > T}. A naive Monte Carlo method consists in simulating n i.i.d.
realizations Xi,...,X, from Px and set p = n™'> " Lyx,)>r. Since p is small and any
evaluation of g is very expensive, this method is clearly intractable in the present context.

The iterative algorithm we propose assumes that g is Lipschitz with a known constant L > 0,
which means that for all (x,x’) € A x A, we have |g(x) — g(x")] < L ||x — x’|| .. This assumption
is in fact the same as in [3] where the objective is to find the minimum of a function g.

Indeed, our method combines two main ingredients: the fact that ¢ is Lipschitz and the ability to
simulate according to the restriction of the law of X to any subset of A via an Adaptive Multilevel
Splitting (AMS) method, also called Subset Simulation (see e.g. [1, 2]).

Let n be the maximal number of calls to g. We propose an iterative procedure that determines
at each step k = 1,...,n the point x; to query g and returns an estimation py of p. Let us stress
that n is the critical parameter of the problem since any computation of g is very costly.

For k = 1,2,...n, we denote by Aj_; the union of all subdomains (hyperrectangles) of A where

g is likely to exceed T. We start with Ay = A. Let A, be a subdomain of Ap_q1, we set Ay =

[a’“, bk} = Hle [af, bf] We initialize A; = A. The probability that X belongs to any subdomain

Ay of Ap_; is estimated on the fly, hence in particular P(X € A;) = 1. We also defined [} an
increasing sequence of subdomains of A contained in I' and initialize T'y = ().

For k =1,2,...n, (see also Figure 1)

e Find the hyperrectangle Aj, of Aj,_; with the highest probability estimate.

e Evaluate g at the center x = ((af +b§)/2),_., of Ar. Under the Lipschitz condition:
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Figure 1: Left: step k = 1; A; = [—2,2]; ;1 = 0. Right: step k = 2; As = [0.04,2]; 25 = 1.02.
The line - - - is the density of X; + + + is the sample Xy,... Xy « L(X|X € Ag).

- If g(xx)+ L ku —kaoo < T, it follows that for all x € Ag, g(x) < T, hence the update
Ay = Ay \ A and Iy = 'x_1. No other evaluation of g in Ay is necessary.

— Else, if g(xx) — L ku — kaOO > T, it follows that for all x € A, g(x) > T, hence the update
Ap = Ap_y \ A and [y = Ts_1 U Ax. No other evaluation of g in Ay is necessary.

— Else there exists a hyperrectangle Hy in Ag, with center xj, where g is always above or below
the threshold, depending on g(xx). Indeed, if g(xz) > T (resp. g(xx) < T), then for all
x € Hy, g(x) >T and T'y, = I'y 1 U Hy, (resp. g(x) < T and 'y, = I'y—1). In other words,
there exist hyperrectangles of Ay where g is still likely to exceed T, so that Ay = Ag_1 \ Hg.

e For Hj and for all hyperrectangle D of Ay where g may exceed T, use an AMS method to
estimate P(X € D). First, draw a Monte Carlo sample X, ..., Xy « L(X]|X € Ay) for example
by applying MH algorithm. Then, estimate P(X € D) = P(X € D|X € A;)P(X € Ayj), where
P(X € Ay) was estimated before. Now, any subset of Ay, and Ty, is associated with a probability.

e Update the estimation p} of p as follows: plY = pi¥ (Ag) + ;B{cv(fk), where ﬁkN(flk) and ﬁfc\’(fk)
are the estimations of P(X € A;) and P(X € I'}), that are computed on the fly. Note that at
the end of step n, one can refine pY by running again the algorithm with a larger N but with
the same sets flk and f‘k, 1<k <n.

As a conclusion, our algorithm provides a closer and closer upper-bound of p. The precision of
this estimation only depends on the budget n and the size N of the Monte Carlo sample.
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