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Abstract:

Given a hyperrectangle A = [a, b] =
∏d

i=1 [ai, bi], we consider the stochastic model Y = g(X),
where X is a random vector with support in A and g : A → R is a black-box function that can
be computed at any point x ∈ A but which is costly to evaluate. We typically assume that X
has a density which is known up to a normalizing constant, so that Metropolis-Hastings (MH)
techniques can be applied to simulate from the law of X or from its restriction to a subset of A.

Next, given a threshold T ∈ R, we want to estimate the small probability of failure p defined as:

p = P(Y > T ) = P (g(X) > T ) = PX(Γ),

where Γ = {x ∈ A, g(x) > T}. A naive Monte Carlo method consists in simulating n i.i.d.
realizations X1, . . . ,Xn from PX and set p̂ = n−1

∑n
i=1 1g(Xi)>T . Since p is small and any

evaluation of g is very expensive, this method is clearly intractable in the present context.

The iterative algorithm we propose assumes that g is Lipschitz with a known constant L > 0,
which means that for all (x,x′) ∈ A×A, we have |g(x)− g(x′)| ≤ L ‖x− x′‖∞. This assumption
is in fact the same as in [3] where the objective is to find the minimum of a function g.

Indeed, our method combines two main ingredients: the fact that g is Lipschitz and the ability to
simulate according to the restriction of the law of X to any subset of A via an Adaptive Multilevel
Splitting (AMS) method, also called Subset Simulation (see e.g. [1, 2]).

Let n be the maximal number of calls to g. We propose an iterative procedure that determines
at each step k = 1, . . . , n the point xk to query g and returns an estimation p̂k of p. Let us stress
that n is the critical parameter of the problem since any computation of g is very costly.

For k = 1, 2, . . . n, we denote by Ãk−1 the union of all subdomains (hyperrectangles) of A where
g is likely to exceed T . We start with Ã0 = A. Let Ak be a subdomain of Ãk−1, we set Ak =[
ak, bk

]
=
∏d

i=1

[
aki , b

k
i

]
. We initialize A1 = A. The probability that X belongs to any subdomain

Ak of Ãk−1 is estimated on the fly, hence in particular P(X ∈ A1) = 1. We also defined Γ̃k an
increasing sequence of subdomains of A contained in Γ and initialize Γ̃0 = ∅.

For k = 1, 2, . . . n, (see also Figure 1)

• Find the hyperrectangle Ak of Ãk−1 with the highest probability estimate.

• Evaluate g at the center xk =
(
(aki + bki )/2

)
1≤i≤d of Ak. Under the Lipschitz condition:
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Figure 1: Left: step k = 1; A1 = [−2, 2]; x1 = 0. Right: step k = 2; A2 = [0.04, 2]; x2 = 1.02.
The line - - - is the density of X; + + + is the sample X1, . . .XN v L(X|X ∈ Ak).

– If g(xk) + L
∥∥bk − xk

∥∥
∞ ≤ T , it follows that for all x ∈ Ak, g(x) ≤ T , hence the update

Ãk = Ãk−1 \Ak and Γ̃k = Γ̃k−1. No other evaluation of g in Ak is necessary.

– Else, if g(xk)−L
∥∥bk − xk

∥∥
∞ > T , it follows that for all x ∈ Ak, g(x) > T , hence the update

Ãk = Ãk−1 \Ak and Γ̃k = Γ̃k−1 ∪Ak. No other evaluation of g in Ak is necessary.

– Else there exists a hyperrectangle Hk in Ak, with center xk, where g is always above or below
the threshold, depending on g(xk). Indeed, if g(xk) > T (resp. g(xk) ≤ T ), then for all
x ∈ Hk, g(x) > T and Γ̃k = Γ̃k−1 ∪ Hk (resp. g(x) < T and Γ̃k = Γ̃k−1). In other words,
there exist hyperrectangles of Ak where g is still likely to exceed T , so that Ãk = Ãk−1 \Hk.

• For Hk and for all hyperrectangle D of Ak where g may exceed T , use an AMS method to
estimate P(X ∈ D). First, draw a Monte Carlo sample X1, . . . ,XN v L(X|X ∈ Ak) for example
by applying MH algorithm. Then, estimate P(X ∈ D) = P(X ∈ D|X ∈ Ak)P(X ∈ Ak), where
P(X ∈ Ak) was estimated before. Now, any subset of Ãk and Γ̃k is associated with a probability.

• Update the estimation p̂Nk of p as follows: p̂Nk = p̂Nk (Ãk) + p̂Nk (Γ̃k), where p̂Nk (Ãk) and p̂Nk (Γ̃k)

are the estimations of P(X ∈ Ãk) and P(X ∈ Γ̃k), that are computed on the fly. Note that at
the end of step n, one can refine p̂Nn by running again the algorithm with a larger N but with
the same sets Ãk and Γ̃k, 1 ≤ k ≤ n.

As a conclusion, our algorithm provides a closer and closer upper-bound of p. The precision of
this estimation only depends on the budget n and the size N of the Monte Carlo sample.
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