
MascotNum Annual Conference, March 21-23 2018, Nantes, France

Bayesian calibration for computational codes

Mathieu Carmassi
EDF-AgroParisTech

Supervisor(s): Assistant Prof. Pierre Barbillon (UMR MIA Paris, AgroParisTech), Matthieu
Chiodetti (EDF R&D dpt TREE), Dr. Merlin Keller (EDF R&D dpt PRISME) and Prof. Eric
Parent (UMR MIA Paris, AgroParisTech)

Ph.D. expected duration: Jan. 2016 - Dec. 2018

Adress: EDF Lab, Avenue des Renardires, 77250 Ecuelles

Email: mathieu.carmassi@edf.fr

Abstract:

Field experiments are often difficult and expensive to make. To bypass these issues, industrial
companies have developed computational codes. These codes intend to be representative of the
physical system, but come with a certain amount of problems. Code validation is representative
of one of these issues, related to the fact that the code intends to be as close as possible to the
physical system. It turns out that, despite continuous code development, the difference between
code output and experiments can remain significant. Two kinds of uncertainties are observed.
The first comes from the difference between the physical phenomenon and the values recorded
experimentally which is often represented by a white Gaussian noise. The second concerns the
gap between the code and the physical system. To reduce this difference, often named model bias,
or model error, computer codes are generally complexified in order to make them more realistic.
These improvements lead to time consuming codes. Moreover, a code often depends on parameters
to be set by the user to make the code as close as possible to field data. This estimation task is
called calibration and can be performed with a time consuming or a fast code with or without
model discrepancy.

When experimental data (Yexp) are collected, most of the time by sensors, an error is made which
is most of the time a white Gaussian noise. It is due to the uncertainty of the sensors measurement
(ε ∼ N (0, σerr)). The physical understanding is represented by ∀i ∈ J1, . . . , nK, yexpi = ξ(xi) + εi
where ξ(xi) stands for the physical system corresponding to the controlled variables vector xi.
The physical system is what the numerical code intends to mimic. However, a set of parameters
appears when the code is set up. When the true value of the parameter is known, the code can
replace the physical system. In practice it is almost never the case, that is why the first statistical
model for calibration is defined as

M1 : ∀i ∈ J1, . . . , nK yexpi
= fc(xi,θ) + εi (1)

where θ is the parameter vector of the computational code. The first issue encountered, is when
the code is time consuming ([5]). Calibration requires a large amount of code calls and when the
time of an execution of the code is high, it becomes unrealistic to realize such a study. To bypass
this issue, a surrogate is used instead of the code ([1]).

M2 : ∀i ∈ J1, . . . , nK yexpi
= F (xi,θ) + εi (2)

where F (•, •) ∼ PG{(•, •), (•, •)}. The second issue comes from the fact that from the first model,
we have considered the computational code good enough to replace the physical system in the
equation by the output of the code. Some papers ([3], [2]) advocate to add another error term

MascotNum Annual Conference, March 21-23 2018, Nantes, France

between the code and the physical system. This error is called discrepancy or code error. When
it is introduced in the first model, it becomes:

M3 : ∀i ∈ J1, . . . , nK yexpi
= fc(xi,θ) + δ(xi) + εi (3)

where δ(•) ∼ PG(•, •). Identically, when it is introduced in the second model, it becomes:

M4 : ∀i ∈ J1, . . . , nK yexpi = F (xi,θ) + δ(xi) + εi (4)

The two Gaussian processes δ and F are defined with different expectancies and covariance func-
tions. The parameters of those functions are called nuisance parameters and also have to be
estimated. Bayesian calibration uses Markov chain Monte Carlo methods such as the Metropo-
lis Hastings algorithm that requires computations of the likelihood. For M1 and M3 where no
surrogate are used, the likelihood can be written with only the values recorded experimentally
(Yexp). However forM2 andM4, a full likelihood can be used with all collected data ({Yc, Yexp}).
A method called modularization ([4]) consists in splitting the estimation in two steps. The first
concerns the estimation of the nuisance parameters from the surrogate by using only the partial
likelihood written with only Yc. Then, they are plugged into the conditional likelihood (Yexp|Yc)
and the parameter to calibrate are estimated.

An application case illustrates the use of the four models and the estimation selected. We focus
and discuss divergence points, especially with the hypotheses made on the different Gaussian
processes. This example, motivated by an industrial and financial context, uses a code which
predicts the power from a photovoltaic plant and will be used in a prevision context.

A package called calibrationCode has been developed and implements calibration for the four
models. It allows the user to control each estimation parameter, to define properly the prior
densities and to run calibration. The package is coded in R6Class and provides several methods
such as $plot() or $summary(), which allow to access to different ggplot or a summary of what
has been estimated. The package also implements cross validation run on calibration data set
with leave one out and k-fold methods. Then a function prediction creates a prevision of the
physical system based on previous calibration.

References

[1] Dennis Cox, Jeong Soo Park, and Clifford Singer. A statistical method for tuning a computer
code to a data base. Computational Statistics and Data Analysis, 2001.

[2] Dave Higdon, Marc C Kennedy, J Cavendish, J Cafeo, and R Ryne. Combining field data and
computer simulations for calibration and prediction. SIAM Journal on Scientific Computing,
2004.

[3] Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal
of the Royal Statistical Society, serie B, Methodological, 2001.

[4] Fei Liu, Susie Bayarri, and Jim Berger. Modularization in bayesian analysis, with emphasis
on analysis of computer models. Bayesian Analysis, pages 119–150, 2009.

[5] Jerome Sacks, William J. Welch, and Henry P. Wynn Toby J. Mitchell. Design and analysis
of computer experiments. Statistical science, pages 409–423, 1989.

Short biography – I am an engineer from IFMA (French Institute of Advanced Mechanics,
called now SIGMA Clermont). I completed my last internship at EDF under the supervision of
Merlin Keller. I have been tasked to apply a screening method to a code that was time consuming.
I chose to continue in a Ph.D. in order to have the opportunity to carry out research for a strong
industrial context.

