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Abstract:

The objective of the work presented here is the development of a Bayesian calibration method for a
simulation-based model with stochastic functional input and output, involving the representation
of the likelihood function by a Gaussian surrogate model.

Classical Bayesian calibration implies the computation of the likelihood function using a stochastic
model of the system output and the available experimental data. This likelihood function is then
used to estimate the posterior distribution of the model parameters. Typically, this estimation
step is performed by Markov Chain Monte Carlo (MCMC) algorithms. Such algorithms require
numerous calls to the likelihood function, and consequently numerous simulation runs. We here
consider the case when the latter are expensive, which results in unaffordable computational costs.

Such issues may be adressed by relying on surrogate models of the system output. However, in
the present case, because the system output is functional, its representation by a surrogate model
is a complex task. Instead, we chose to directly build a gaussian surrogate model of the scalar
likelihood function. This surrogate model is built in two steps. First, a global training step using a
space-filling design of experiment in the multidimensional parameter space determines the global
dependance of the likelihood function to the model parameters. Second, an enrichment step refines
the surrogate model in the areas of interest. In the present case, we are interested in the most
probable values of the parameters. The refinement is thus performed around the location of the
likelihood function maximum. For this purpose, optimization algorithms can be used, such as the
EGO algorithm proposed in [2] or the KGCP policy proposed in [4] if the likelihood observations
are noisy.

With the deterministic likelihood function represented by a random surrogate model, the most
straighforward solution to perform the subsequent MCMC step is to use the gaussian surrogate
model mean function as the best predictor of the likelihood function. Although it may provide
interesting results, such an approach tends to overestimate the accuracy of the calibration because
it does not take into account the new type of uncertainty introduced by the use of a surrogate
model. To include the surrogate model uncertainty in the posterior distribution estimation, we
propose to perform a Monte Carlo sampling of trajectories of the surrogate model. The MCMC
can then be performed on each one of these trajectories, and the posterior distribution estimated
from the resulting samples. However, drawing a trajectory of gaussian process indexed on a
multidimensional space can be expensive. Moreover, we do not know a priori at which points of
the parameter space the value of the trajectory is needed. Instead of computing each trajectory
exactly, we propose a way to approximate them. This approximation consists in the expectation
of the surrogate model conditioned by the value of the trajectory at the points of a conditoning
set of limited size. The choice of this conditoning set is crucial. Its goal is to reduce as much as
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possible the variance of the surrogate model in the areas of interest of the parameter space, so
that its expectation is close to any trajectory in these areas.

The method is applied to a railway case, for the state health monitoring of high-speed train
suspensions using in-service measurements by embeded accelerometers. The system consists of a
rolling train, excited by the track geometric irregularities. They consist of small displacements
of the rails relatively to the theoretical track design. The observed quantities are accelerations
at various points in the train, gathered in what we call the train dynamic repsonse. The model
parameters to identify by calibration are the ones describing the mechanical characteristics of the
suspensions.

Deterministic train dymanics simulation is used to build the stochastic train response model. In
[3], it has been shown that the input of the system, the track geometric irregularities, can be
modeled as a non-stationary random field. An output predictive error consisting of a gaussian
stochastic process is added to the simulation output. Its purpose is to globally take into ac-
count the measurement noise and the various model errors, such as the modeling simplification,
the discretization or the uncertainty about certain model parameters (other than the suspension
parameters to identify). This output predictive error must be carefully identified in a prelimi-
nary step. For this application, the MCMC algorithm that was used is the Transitional MCMC
proposed in [1] because the probability density functions to estimate were very peaked.

The method was validated on a numerical experiment, with simulated data for which the value of
the parameters is known. Its application on actual experimental data gave very promising results.
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