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Abstract:

In the last decades, Gaussian processes (GPs) have become one of the most attractive Bayesian
framework due to their ability to perform both regression and classification tasks [1]. However,
due to their pure data-driven nature, they do not account for the physical properties exhibited in
real-world data (e.g. positivity, monotonicity), which can lead to more realistic data interpolation
and uncertainty quantifications [2, 3]. Figure 1 shows an example where the target function
satisfies both boundedness (i.e. 0 ≤ y(xi) ≤ 1, for all xi ∈ [0, 1]) and monotonicity constraints
(i.e. y(xi−1) ≤ y(xi), if xi−1 ≤ xi). Our aim is to investigate deeper GP regression models under
inequality constraints.
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Figure 1: GP models interpolating the Gaussian CDF x 7→ Φ(x−0.5
0.2 ): (left) classical

(unconstrained) GP model, (right) constrained GP model satisfying both boundedness and
monotonicity constraints.

To the best of our knowledge, the only probabilistic model which satisfies specific inequalities
everywhere in the input space is proposed in [2]. With this approach, the posterior converges to
the one provided by splines methods [4]. Our work builds on this framework and our contributions
are threefold. First, we extend their framework to deal with any linear inequality constraint (not
only boundedness, monotonicity or convexity). Second, we suggest an efficient Hamiltonian Monte
Carlo-based sampler to approximate the posterior distribution satisfying both interpolation and
inequality constraints. Finally, we investigate theoretical and numerical properties of a constrained
likelihood for covariance parameter estimation.

The model was tested under both synthetic and real-world data in 1D or 2D. According to
the experimental results under different types of inequality constraints, the proposed method
fits properly the observations and provides realistic confidence intervals (see Figure 1). On a
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2D nuclear criticality safety dataset, it provides reliable results on both data prediction and
uncertainty quantification satisfying both positivity and monotonicity conditions exhibited by
the nuclear data. Table 1 shows the performances of the Gaussian models for interpolating the
nuclear database using different number of training points n and using twenty different random
Latin hypercube designs. The models are assessed using the Q2 criterion.1 One can observe that
constrained GP models outperformed the unconstrained one in all the cases.

Table 1: Assessment of the Gaussian models for interpolating the nuclear database using different
number of training points n and using twenty different random Latin hypercube designs. Predictive
accuracy is evaluated using the mean µ and the standard deviation σ of the Q2 results. MLE:
maximum likelihood estimation. CMLE: constrained maximum likelihood estimation.

n
Q2

unconstrained GP + MLE constrained GP + MLE constrained GP + CMLE
µ± σ µ± σ µ± σ

2 −0.128± 1.004 0.967 ± 0.026 0.952± 0.043
4 0.558± 0.260 0.981± 0.014 0.996 ± 0.006
6 0.858± 0.139 0.940± 0.059 0.995 ± 0.004
8 0.962± 0.035 0.995 ± 0.003 0.981± 0.011

We would like to present the results obtained during the 1st year of the PhD training at MascotNum
Annual Conference 2018 for the poster session. We believe that an oral presentation would be more
appropriate at a later edition of the conference, when the results of currently ongoing work could
be presented. This ongoing work consists in the extension of our framework for higher dimension,
and the investigation of the asymptotics for the constrained likelihood. We also believe that our
presentation at the conference could be helpful to discuss possible research directions in the future.
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1Denoting by nt the number of test points, z1, · · · , znt and ẑ1, · · · , ẑnt the sets of test and predicted observations
(respectively), then Q2 = 1 −

∑nt
i=1(ẑi − zi)

2/
∑nt

i=1(z − zi)
2, where z is the mean of the test data. Hence, for

noise-free observations, the Q2 indicator is equal to one if the predictors ẑ1, · · · , ẑnt are exactly equal to the test
data (ideal case), zero if they are equal to the constant prediction z, and negative if they perform worse than z.


