
MascotNum Annual Conference, March 21-23 2018, Nantes, France

Uncertainty quantification in large systems of solvers:
application to reentering man-made space object
trajectory prediction

F. Sanson
Inria

Supervisor(s): Pietro Congedo (Inria), Olivier Le Maitre (LIMSI)

Ph.D. expected duration: Feb.2016 - Feb. 2019

Adress: 200 avenue de la Vieille Tour, 33405 Talence

Email: francois.sanson@inria.fr

Abstract:

Since the beginning of space exploration, the number of orbiting space objects is dramatically in-
creasing and critical Earth orbits, such as the Geostationary Orbit (GEO), are saturated with non
functioning satellites. The ”Loi relative aux Oprations Spatiales” (LOS, Law of Space Operation)
legally obliges space companies like ArianeGroup to deorbit end-of-life objects and to ensure that
the reentry in the Earth atmosphere of these objects presents no risk for human assets.

To assess the risk associated with a reentry event, ArianeGroup needs to predict the trajectory
in the atmosphere of the reentering object, using a multiphysics modeling. At ArianeGroup, the
trajectory of a reentering object is simulated using a system of solvers (SoS) consisting of a set of
interdependent solvers coupled together. Specifically, the simulation involves a trajectory solver
coupled with an aerodynamic solver, a fragmentation model, and an ablation solver. These phys-
ical models involve many unknown parameters and dedicated uncertainty quantification methods
are needed to assess the reliability of the simulation-based predictions. Propagating uncertainties
in a system of solvers can be challenging, due to the coupling effects on the dependences of the tra-
jectory with respect to the uncertain input and the computational cost arising from the sequential
evaluation of multiple solvers. In these situations, standard uncertainty propagation methods are
too costly and alternative methods dedicated to SoS have to be derived. For instance, surrogate-
based methods aiming at approximating the SoS as a whole may be extremely demanding, while
exploiting the structure of the system can drastically reduce the computational effort [3].

In this work, we propose an original method for constructing a system of Gaussian Processes
(SoGP) to form a surrogate model of a system of solvers. The SoGP is composed of a set of
Gaussian Processes (GP) that reproduce the structure of the SoS under study. Each solver of
the SoS is associated with a GP in the SoGP which is trained to approximate its corresponding
solver. The prediction of the SoGP is not Gaussian as it is generally the composition of GP
models [1]. This type of construction was developed in the case of 2 solvers in [2]. The advantages
of the SoGP, compared to constructing a single GP for the whole system at once, are essentially
the following. First, the SoGP has a richer structure and offer more flexibility, and therefore
it can fit a larger range of functions. Second, training the SoGP requires learning multiple but
usually simpler individual solvers, possibly adapting the training efforts. On the contrary, a global
GP model needs to learn the (generally) more complex mapping between the SoS inputs and its
outputs and requires the simulation of the whole system.

The important contribution of this work is the derivation of adaptive training strategies for SoGP.
Adaptive learning is widely used to train single GP. For instance [4] proposed a learning algorithm
based on the maximum of predictive variance (or Maximum of Mean Squared Prediction Error,
MMSPE) to efficiently select new training samples in the input space. To reduce the SoGP
prediction error more effectively, one wants to select distinct new training samples for each GP
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(a) example of system of solver (b) error convergence curve for three training strate-
gies

Figure 1: The left hand side figure represents a system of solvers. The right hand side figure
compares the evolution of the error function of the number of training samples for three different
surrogate models. With LHS with single GP the whole system is emulated by a single GP and
LHS training plan. With LHS with SoGP the system is emulated by several GPs assembled in
a SoGP. The training is generated with LHS. With adaptive training with SoGP, the system is
emulated by several GPs assembled in a SoGP and one of our adaptive training strategy is used.

constituting the system, and possibly to train only a selected subset of GP. To do so, we derive a
predictive variance decomposition of the SoGP into contributions from individual GP. For practical
use, unbiased estimators of these contributions are derived along with lower computational cost
(but biased) approximations. The decomposition of the predictive variance is the backbone of
training algorithms proposed subsequently, that identify the GP and its input point having the
highest contribution to SoGP variance. The SoGP approach and the proposed training algorithms
are tested on analytical problems. The tests show significant improvements compared to a single
GP or a SoGP trained on simple LHS plans (see figures 1 ).
The SoGP framework is finally applied to construct a surrogate of the space objects reentry system
of solvers used at ArianeGroup and predict the ground impact point. Using SoGP brings major
improvements, in terms of precision, compared to using single GP model.
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