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Introduction

Bayesian optimization context

“Black-box” model, multiple outputs

x ∈ X ⊂ Rd Black-box

y1
...

yp

Working hypotheses: expensive to compute, complex yi ’s

non-convex

no derivatives available

possibly observed in noise

2 ≤ p ≤ 20

X: typically a box of dimension 2 ≤ d ≤ 50
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Introduction

Multi-objective optimization


minx∈X y1 (x)

...
minx∈X yp (x)

Ensemble of non-dominated
solutions

Pareto front (objective space) and
Pareto set (design space)
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Classical BO algorithm objective

Obtain a good discrete approximation of the Pareto set = non-dominated
solutions along the entire Pareto front
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Introduction

Challenging situation: many objectives / restricted budget

Accurate Pareto set may not be attainable

Many objectives ⇒ very large Pareto set

Not enough budget to cover all the solutions

Accurate Pareto set may not be desirable

Too many solutions to choose from

Our proposition: use game theory to seek compromise solutions

Game theory literature

Extensive for small discrete problems or convex objectives, scarce for
expensive black-boxes
⇒ Explore BO alternatives for solving game equilibrium problems
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Games and equilibria

Outline

1 Introduction

2 Games and equilibria

3 Solving games with Bayesian Optimization

4 Application to model calibration

5 Conclusion
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Games and equilibria

Game Theory and equilibrium problems

Game theory is the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers

Initially from economics

Now common in artificial intelligence, engineering or machine learning

Game

Multiple decision makers (players) with antagonistic goals

Acceptable compromise = game equilibrium
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Games and equilibria

Nash equilibrium problems (NEP)

NEP: canonical antagonist game

Each player tries to solve his optimization problem:

(Pi ) min
xi∈Xi

yi (x), 1 ≤ i ≤ p

with x = [x1, . . . , xp] ∈ X. We assume here some territory splitting:

X = X1 × . . .× Xp

Definition: writing x = (xi , x−i ) (no actual permutation), x∗ is a NE if:

∀i , 1 ≤ i ≤ p, x∗i = arg min
xi∈Xi

yi (xi , x
∗
−i )

⇒ When everyone plays a NE, then no player has incentive to move from it
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Games and equilibria

An engineering example: multidisciplinary optimization

Each team makes a decision with antagonistic goals

Natural territory splitting: each team acts on its own set of variables

J.A. Désidéri (2012), Cooperation and competition in multidisciplinary optimization,
Comp. Optim. and Applications
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Games and equilibria

A PDE example: data completion

Steady-state heat equation


∇.(k∇u) = 0 in Ω

u = f on Γc (Dirichlet)
k∇u.ν = ψ on Γc (Neumann)

Boundary partially unobservable

∂Ω = Γc + Γi

Data to recover: u|Γi
and k∇u.ν|Γi

Nash game: Dirichlet vs. Neumann

A. Habbal and M. Kallel (2013), Neumann-Dirichlet Nash strategies for the solution of
elliptic Cauchy problems, SIAM J. Control Optim
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Games and equilibria

The Kalai-Smorodinsky solution

Disadvantages of Nash equilibria

Assumes some territory splitting

In general not efficient (in the Pareto sense)

The Kalai-Smorodinsky (KS) idea

Players start negociation from a disagreement point

Progress towards an efficient solution while ensuring equity of
marginal gains

KS solution

Intersection of the disagreement point - ideal point (= utopia or shadow)
straight line with the Pareto front

Kalai, Smorodinsky (1975). Other solutions to Nash’s bargaining problem, Econometrica
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Games and equilibria

Illustration: 2 objectives, 2 variables
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Games and equilibria

Some properties

For 2 players case, KS is proved to be the unique bargaining solution
which fulfills the following

Axioms

Pareto optimality

Symmetry

Invariance w.r.t. affine transformations

Restricted Monotonicity

For N players

Efficiency, Symmetry, Affine invariance

Effective selection device even when combined with refinement
concepts based on stability with respect to perturbations [1].

[1] De Marco G. and Morgan J. (2010). Kalai-Smorodinsky bargaining solution equilibria. JOTA, 145(3), 429-449.
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Games and equilibria

Going further: robust KS using copula

Motivation: unlike Nash, KS is sensitive to non-linear rescaling
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Why copulas?

Nice link to Pareto optimality (see next slide)

Insensitive to non-linear transformations on the marginals
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Games and equilibria

Copulas and Pareto optimality

Pareto optimality and multivariate statistics

Take: Y = (y1(X ), . . . , yp(X )) , X ∼ U(X)

Pareto front = (part of the) zero level-line of the
multivariate CDF FY

Multivariate CDF = marginal densities + copulas

FY (y) = C (F1(y1), . . . ,Fp(yp)) −2 0 2 4

−
3

−
2

−
1

0
1

2
3

x

y

with C : Rp → R copula, Fi = P(Yi ≤ yi ) marginal densities

M. Binois, D. Rulliere, D., O. Roustant,
On the estimation of Pareto fronts from the point of view of copula theory
Information Sciences (2015) 324: 270-285.
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Games and equilibria

Our proposition: KS in the copula space (CKS)

Assuming a distribution for X (e.g. X ∼ U(X))

We look for the KS of F1(y1(X )), . . . ,Fp(yp(X ))

Original space Copula space
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Worst solution for all objectives is (1 . . . 1) ⇒ new disagreement point
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Games and equilibria
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On discrete spaces: rank space

CKS = Pareto optimal solution with closests ranks among objectives

Invariant by any (strictly) monotonic transformation of marginals

... but depends on X ’s distribution
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BO and games

Bayesian optimization: two ingredients

Quick-to-evaluate surrogate of the objective: Gaussian process
regression

Sequential sampling via maximizing acquisition functions

Initial set of

observations

Objectives evaluation

Surrogate building (nested loop)

Acq. func. maximization (nested loop)
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BO and games

Gaussian process regression

Prior π : y realization of a GP Y

Entirely defined by its mean Eπ(Y (x)) and covariance covπ(Y (x),Y (x′))

Regression model (ŷ) = law of the GP conditioned on observations

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

x

y(
x)

●

●

●

●

●

●

●

●

(Parametric form assumed for mean and covariance, estimation by maximum likelihood)
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BO and games

Sequential sampling (EGO algorithm)

The acquisition function balances between exploration and exploitation
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BO and games

BO and equilibria

Regression: one GP model for each obj yi (correlation is neglected)

GP is used to “denoise” the objectives (if needed)

Multivariate regressor: Y(.) ∼ GP (µ(.),Σ (., .)) with Σ diagonal.

Sequential sampling boils down to finding a “good” acquisition function

⇒ Based on Y(.), which xnew should I visit next?

Canonical acquisitions: Expected Improvement, Upper Confidence Bound

Not usable here due to the complex learning task (measure of progress?)

Nash: first-order stationarity

Kalai-Smorodinsky: part of the Pareto front + Nadir + Shadow

Copula-Kalai-Smorodinsky: marginals + copula
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BO and games

What we will use: stepwise uncertainty reduction

Villemonteix, Vazquez, Walter (2009) An informational approach to the global
optimization of expensive-to-evaluate functions, J. of Glob. Opt.

Bect, Ginsbourger, Li, Picheny, Vazquez, (2012) Sequential design of computer
experiments for the estimation of a probability of failure, Statistics and Computing.

Hernandez-Lobato, Hoffman, Ghahramani, (2014) Predictive entropy search for efficient
global optimization of black-box functions, NIPS

...
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BO and games

What do we know about the equilibrium?

Computing equilibria on discrete sets is easy

The search for Nash, KS, or CKS can be done by (smart) exhaustive
search on a grid.

What we can do

Discretize X (grid, LHS...)

Draw GP samples
Y1, . . . ,YM of Y(Xdisc)

Get (quickly) equilibrium
of each Y i
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BO and games

What do we know about the equilibrium?

GP sample ⇒ cloud of potential solutions (+)

x y

z

x y

z
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⇒ We want to choose xnew so that the cloud shrinks!

V. Picheny, M. Binois, A. Habbal Bayesian optimization and game theory March 23rd, 2018 24 / 37



BO and games

Formalizing: Stepwise uncertainty reduction (SUR)

Random equilibrium

y(x∗) = Ψ(y) (Nash, KS or CKS) equilibrium for cost function y

Y random (GP) ⇒ Ψ(Y) random ( → the +’s)

Uncertainty measure of equilibrium ≡ “volume” of Ψ(Y):

Γ(Y) = det [cov (Ψ(Y))]

⇒ Γk if Y conditioned on observations (x1, y1), . . . , (xk , yk )

Greedy (stepwise) uncertainty reduction

Optimal choice: xk+1 = arg min Γk+1

Out of reach without y(xk+1)!

Acquisition function: expected reduction

J(xk+1) = EFk+1
(Γ [Y|Fk+1 = Y(xk+1)])

with Y(xk+1) ∼ GP (µ(xk+1),Σ (xk+1, xk+1))
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BO and games

Computing the acquisition function

Acquisition function

J(xnew ) = EFnew (Γ [Y|Fnew = Y(xnew )])
with Y(xnew ) Gaussian

Two-layer Monte Carlo

Y(new)
1 , . . . ,Y(new)

K observation drawings at xnew

We condition the paths by these observations:

Ym|Y(new)
k

Ĵ(xnew ) ≈

1

K

K∑
k=1
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[
cov

(
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k , . . . ,YM |Y(new)
k

)]
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BO and games

Illustration: iteration 1, 3 and 7 (KS search)
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With only 13 points: KS identified, very small residual uncertainty

Trade-off between learning the center and the extremities of the
Pareto front
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BO and games

In practice: Many numerical tricks are necessary...

Efficient data structure and discrete games solver

Use of parallel computation
Fast algorithm for drawing and updating simulated GP paths

Chevalier, Emery, Ginsbourger (2015) Fast update of conditional simulation
ensembles, Mathematical Geosciences

Small discretized space by choosing only useful points
(⇒ shorter paths, smaller games)

Optimization of the acquisition function only over the discretized
space
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Application to model calibration
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Application to model calibration

li-BIM: an agent-based model for designing buildings

Simulated behavior of occupants in a building

Numerical modeling of the building: thermal, air quality, lighting, etc.

Evolved occupational cognitive model (Belief-Desire-Intention)

F. Taillandier, A. Micolier, P. Taillandier (2017). Li-BIM (Version 1.0.0), CoMSES
Computational Model Library
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Application to model calibration

The li-BIM calibration problem

Many parameters to tune

Behavioral: sensitivity to hot, cold, air quality, hunger, tidiness...

Appliances characteristics: electrical power, efficiency...

Model should match real data (records or surveys)

Electrical consumption

Average temperature, air quality

Time spent on various activities

A challenging optimization problem

11 parameters, 10 objectives

Expensive, stochastic model (30min / simulation)

Outputs of different nature → how to define an acceptable compromise?
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Application to model calibration

Experimental setup

BO configuration

100-point LHS + 100 infills

Space discretization: 1000 points (renewed at each iteration)

Choosing the next point ≈ 2 min

Objectives: square errors w.r.t. targets (averaged over 8 repetitions)

KS + CKS (with empirical copula)

Preliminary result

Out of the 300 points, only 5 were dominated
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Application to model calibration

Results - objective space (% error)
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Apparent trade-off between exploration and exploitation
CKS more exploratory and sensitive to local mass on marginals
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Application to model calibration

Results - objective space (2D)
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Conclusion
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Conclusion

Summary and future steps

Ingredients

Game theory concepts to define compromise solutions

GPs + Stepwise Uncertainty Reduction to find them

⇒ Parsimonious algorithm to tackle automatically many black-box
objectives

SUR is very accomodating, so why not also...

Generalized Nash problems (i.e. with constraints)

KS with smart disagreement points: e.g. Nash-Kalai-Smorodinsky

Batch-sequential strategies

Smart use of repetitions (for stochastic simulators)
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Conclusion

References

Want to give it a try? R package GPGame

https://CRAN.R-project.org/package=GPGame

Implements Nash, KS, CKS + Nash-KS (experimental)

Want to know more?

V. Picheny, M. Binois, A. Habbal
A Bayesian optimization approach to find Nash equilibria (2017+)
preprint: https://arxiv.org/abs/1611.02440

M. Binois, V. Picheny, A. Habbal
The Kalai-Smorodinsky solution for many-objective Bayesian optimization (2017+)
NIPS BayesOpt workshop, https://bayesopt.github.io/papers/2017/28.pdf
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