DE LA RECHERCHE À L'INDUSTRIE

Ceaden

Direction d l'Energie Nucléaire Direction des Activités Nucléaires de Saclay Département de Modélisation des Systèmes et Structures

Shapley indices estimation in multi-physics nuclear transient modeling

Thesis director: Josselin Garnier Centre de Mathématiques Appliquées, Ecole Polytechnique Gregory Kyriakos Delipei gregory.delipei@cea.fr

Supervisors: Jean-Charles Le Pallec, Benoit Normand Laboratoire de Protection, d'Etudes et de Conception (DEN/DANS/DM2S/SERMA/LPEC), CEA Saclay

GENERAL CONTEXT

Pressurized Water Reactor

- Power generation: 1300MWe
- Lifetime: 40-60 years
- Pressure: 155 bar
- Fuel: 3-5% enriched UO₂
- Water temperature: 290-325 °C
- 200 fuel assemblies of 264 fuel

2 Rod Ejection Accident (REA)

- Mechanical failure \rightarrow control rod ejection in 0.1s
- Peak creation due to Doppler thermal and moderator feedback
- Strong multi-physics effects that lead to can severe reactor damage

(Reactor core)

pins and 25 control rod guides

Academic Core Design 3

REFL	REFL	REFL	REFL	REFL
REFL	UO2	UO2	UO2	REFL
REFL	UO2	UGD12	UO2	REFL
REFL	UO2	UO2	UO2	REFL
REFL	REFL	REFL	REFL	REFL

- Uncertainty analysis on an academic core to capture the main phenomena
- 3x3 fuel assemblies core at zero power
- ejection in central • Control rod assembly
- Homogenization at assembly level
- Axial power deformation due to Xe concentration (penalized scenario)

CORPUS/SALOME tool is used for coupling

Reactor Core Thermohydraulics code FLICA4 ® Mixture mass, momentum and energy balance equations Vapor mass balance equation

EXERCISE

• APOLLO3® –FLICA4 coupling with 2 group diffusion approximation in APOLLO3[®] and simplified thermal model in FLICA4

- For model: Y = F(X), $X \in R^d$
 - $f_i(\pi)$ the set

						• $K = \{1, 2,, d\}$ π a permutation of the indices in K and $P(\pi)$ the set		
NEUTRONICS FUEL-THERMAL		THERMAL-HYDRAULICS		$(1,2,a), n a permatation of the indices in it and 1_1(n) the set$				
<u>Inputs</u>	<u>Output</u>	<u>Inputs</u>	<u>Output</u>	<u>Inputs</u>	<u>Output</u>	containing all the variables preceding 1 in π		
Total cross-sectionsMax (T_1, T_2) linevxFission cross-sectionsdut (NE_1, NE_2) (NE_2)	ximum local F near power ho uring REA (P _{max})	Fuel specific neat capacity (Cp _f)	Maximum local stored enthalpy in fuel during REA (h _{max})	Convective heat transfer coefficient (CT)	Minimum local DNBR during REA (DNBR _{min})	• For J⊆K the cost function is defined as the expected remaining variance of the output if all variables except the ones in J are fixed		
Diffusion coefficients (D_1, D_2) Scattering cross-sections $(S_{1\rightarrow 1}, S_{2\rightarrow 1}, S_{1\rightarrow 2}, S_{2\rightarrow 2})$	C	Cladding thermal conductivity (λ _c)		Recondensation model (RT)		$c(J) = E[Var(Y X_{\sim J})]$ • The cost function is estimated by two loop Monte Carlo simulations		
Neutronic inputs are correlated , while the rest inputs are independent				ndependent		• IN permutations are randomly generated		
• Monte Carlo uncertainty propagation and sensitivity analysis using Shapley indices $\widehat{Sh_i} = \frac{1}{N} \sum_{r=1}^{N} \hat{c}(P_i(\pi_r) \cup \{i\}) - \hat{c}(P_i(\pi_r))$								
7 Uncertainty propagation						8 Sensitivity analysis		
• Model close to linear, something expected by the simplifications in the coupling P_{max}					P _{max}	P _{max} P _{max} $T_1, NF_1, NF_2, D_1, S_{1 \rightarrow 1}, S_{1 \rightarrow 2}$ are important for all outputs		
• Relative standard variations of 6.21% , 2.96% and 3.13% for P_{max} , h_{max} and $DNBR_{min}$ respectively		4.5e+06 $5.0e+067 = 6.21 %$	• Cp _f is important for h_{max} and P_{max} • CT is important for DNBR _{min}					

- Study full coupling using ALCYONE code for Fuel-Thermal modeling (very time • consuming) with all the uncertain input variables
- Use larger core design, with possibility of spatial cross-sections correlations
- Create a methodology to perform uncertainty analysis on transient nuclear • calculations
- 1. A. Targa, "Development of multi-physics and multi-scale Best Effort Modelling of pressurized water reactor under accidental situations", Thesis, Université Paris-Saclay, July 2017.
- 2. J.-C. Le Pallec, K. Mer-Nkonga, "Neutronics/Fuel Thermomechanics coupling in the framework of a REA (Rod Ejection Accident) Transient Scenario Calculation", PHYSOR 2016 Conference: Unifying Theory and Experiments in the 21st Century, Sun Valley, Idaho, USA, May 1-5, 2016
- D. Schneider et al., "APOLLO3 ®: CEA/DEN deterministic multi-purpose code for reactor physics 3. analysis", PHYSOR 2016, Sun Valley, Idaho, USA, May 1-5, 2016.
- 4. I. Toumi et al., "FLICA4: a three dimensional two-phase flow computer code with advanced numerical methods for nuclear applications", Nuclear Engineering and Design, 200, 139-155, 2000

MASCOT-NUM 2018 ANNUAL CONFERENCE