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MATHEMATICAL PROBLEM

e F'ind a robust or reliable optimum by replacing the objective and constraint functions
with robustness and reliability measures.

minimize /maximize: pys(x)
subject to:  pg(
by changing:

e Many choices for ps measures (same for p,):
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which allows several paradigms:

Robustness pf

« The performance has to remain as high as possible despite the uncertainties »

P, Reliability

« The constraints must remain as satisfied as possible despite the uncertainties»

Mean constraint

« Performance in maximized in « Constraint is satisfied in average »

Mean performance I

average »
Minimal performance Probabilistic constraint
« The worst performance oufcome is « Constraint has to be satisfied in
maximized » x% of the outcomes »
Minimal constraint

« Looking for a high mean
performance and a low variability »

« Even in the worst case, the
constraint has to be satisfied »

Taguchi I

Main issues: Curse of dimensionality, limited computational budget for
measure computations

CLASSICAL METHODS
Double loop / Nested loop

| Optimizor S =

pf-(x) Nopt | p"’ (x)
pg (x) V% g €

NUQ

f(x,$)
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The Double loop is performed on a meta-
model (negligible evaluation cost) built
in the coupled space (x, &) over a chosen
design of experiments.

Issues: Choice of N,,,,, no adaptivity

A Priori MetaModel

At each optimization iteration, a full un-
certainty quantification is performed and
the measures are calculated for the cur-
rent design .

Issues: High cost, no memory

CONVERGENCE ANALYSIS

e SABBa is performed with coupled-space (purple curve) and separated-space (yellow
curves) models. The problem is a bi-objective mean /variance minimization.

e Ten runs of each approach give mean convergence and associated variability. Worst
runs are printed on the right to assess the robustness of the framework —-

e The log-scaled probabilistic modified Hausdorft distance to the optimum is plotted.
e Improvement with respect to an A Priori MetaModel strategy (green curve).
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PERSPECTIVES

e Complete the analysis by considering additional problems/measures.
e Apply the framework to several engineering-based optimization problems.
e [ixtension to bayesian optimization under uncertainty.
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SABBA FRAMEWORK

1- Bounding-Box approach B B(7".2)

e Box-approximation of the statistical measures, =
containing the real value. '

A

e Uncertainty Quantification is performed accura- |
tely only on promising designs, creating an adaptive e
UQ multi-fidelity:.

fzi fz

— Cost-reduction for the computations on non-optimal designs, at the be-
ginning of the optimization
2- Surrogate-Assisting strategy

e Metamodels are built on the statistical measures and updated at each evaluation to
bypass the UQ process when convergence is reached.
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s Cost-reduction of the densification of the Pareto front, at the end of the
optimization

RESULTS (WORST FROM CONVERGENCE ANALYSIS)
High-quality metamodel
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Low-quality metamodel
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